
Turbulent processes and mean-field dynamo
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Abstract Mean-field dynamo theory has important applications in solar physics
and galactic magnetism. We discuss some of the many turbulence effects relevant
to the generation of large-scale magnetic fields in the solar convection zone. The
mean-field description is then used to illustrate the physics of the 𝛼 effect, turbulent
pumping, turbulent magnetic diffusivity, and other effects on a modern solar dynamo
model. We also discuss how turbulence transport coefficients are derived from local
simulations of convection and then used in mean-field models.

1 Introduction

The problem of solar and stellar dynamos is still an open one. In spite of tremendous
progress over recent decades, we still do not understand with any degree of certainty

Axel Brandenburg
Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg
12, 10691 Stockholm, Sweden; The Oskar Klein Centre, Department of Astronomy, Stockholm
University, AlbaNova, 10691 Stockholm, Sweden; School of Natural Sciences and Medicine,
Ilia State University, 0194 Tbilisi, Georgia; McWilliams Center for Cosmology and Depart-
ment of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA, e-mail:
brandenb@nordita.org

Detlef Elstner
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany,
e-mail: delstner@aip.de

Youhei Masada
Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
e-mail: ymasada@fukuoka-u.ac.jp

Valery Pipin
Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia, e-
mail: pip@iszf.irk.ru March 23,
2023

1

ar
X

iv
:2

30
3.

12
42

5v
1 

 [
as

tr
o-

ph
.S

R
] 

 2
2 

M
ar

 2
02

3

brandenb@nordita.org
delstner@aip.de
ymasada@fukuoka-u.ac.jp
pip@iszf.irk.ru
songyongliang


songyongliang


songyongliang


songyongliang



2 A. Brandenburg et al.

the reason behind the equatorward migration of solar activity belts, the dependence
of cycle frequency on rotation frequency, or the level of magnetic activity. All
models of solar and stellar magnetism rely on some assumptions. Even the most
realistic simulations suffer from finite resolution and the compromises in the physics
that are made. The crucial question is then, when and where we are allowed to
make compromises and when not. Among those approximations is the second-
order correlation approximation (SOCA), also known as the first-order smoothing
approximation. These are nowadays either replaced by other approximations or by
numerical techniques such as the test-field method, as will be explained later in this
review.

The Sun’s magnetic field exhibits a clear mean field with spatio-temporal order:
antisymmetry of radial and toroidal fields about the equator and the 11-yr cycle. This
mean field can well be described by an azimuthal average. The radial component
of such an azimuthally averaged mean field has a typical strength of ±10 G. This
is not much compared with the peak strength of ±2 kG in sunspots, but much of
this is “lost” in the process of averaging. Of course, whatever is lost corresponds
to fluctuations, which actually play crucial parts and correlations between different
fluctuations lead to various mean-field effects.

Mathematically, once an averaging procedure has been defined, we have the mean
field 𝑩, indicated by an overbar. Then, the difference between the actual and the mean
field, 𝑩 and 𝑩, gives the fluctuating field as 𝒃 ≡ 𝑩 − 𝑩. The same procedure also
applies to all other quantities. This formal distinction between mean and fluctuating
fields, which are sometimes also called large-scale and small-scale fields, is important
in discussions with observers. Coronal mass ejections, for example, are superficially
reported as being part of a large-scale field, but this may not be true anymore when
we think of averaging over the full solar circumference. Thus, paradoxically, even if
something is large by some standards, it may not qualify as large-scale under this
formal definition of an azimuthal averaging.

Azimuthal averaging is not always a good recipe. Some stars have nonaxisym-
metric magnetic fields, and even the Sun is believed to have what is known as active
longitudes – a weak nonaxisymmetric magnetic field on top of a predominantly
axisymmetric one. Those nonaxisymmetric fields might best be described through
low-order Fourier mode filtering. This is probably completely fine, but slightly
problematic at the formal level, because then the average of the product of mean and
fluctuating fields is no longer vanishing, as it would be in the case of an azimuthal av-
erage. This mathematical property is one of several rules that are called the Reynolds
rules. However, as alluded to above, the violation of this particular Reynolds rule
this is probably just a technicality that makes mean-field predictions less accurate.
We refer here to the work of Zhou et al (2018) for a detailed investigation. There are
a number of other limitations in mean-field theories that will be discussed below.

The purpose of defining mean fields is twofold. On the one hand, they allow
us to quantify large-scale magnetic, velocity, and other fields that are observed
or that are present in a simulation. On the other hand, they allow us to develop
predictive theories for these averages. In these theories, mean fields can sometimes
emerge because of instabilities and/or because of suitable boundary conditions. This
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is possible because of certain mean-field effects, by which one usually means the
relations between correlations of fluctuations and various mean fields. Discussing
those effects is an important purpose of this review. The ultimate goal of mean-field
dynamo theory is to understand and model the Sun and other stars. We therefore also
discuss in this review the status of such attempts. For a basic introduction to mean-
field theory, which is not the subject of this review, we refer to standard textbooks
(Moffatt, 1978; Krause and Rädler, 1980; Zeldovich et al, 1983) and other reviews
(Brandenburg and Subramanian, 2005a; Kulsrud and Zweibel, 2008; Miesch and
Toomre, 2009; Charbonneau, 2010, 2014).

2 Mean-field theory and avoiding some of its limitations

We can never expect a mean-field theory to produce an accurate representation of
reality. One reason is the fact that the underlying turbulence has stochastic aspects, so
each realization with slightly different initial conditions would result in a somewhat
different outcome. However, there could be other reasons for discrepancies that we
discuss next. Some of those discrepancies can nowadays be avoided.

Mean-field electrodynamics. In mean-field theory, one derives evolution equa-
tions for the averaged fields, namely the mean magnetic field 𝑩, the mean velocity
𝑼, and the mean thermodynamic variables such as mean specific entropy 𝑆 and the
mean density 𝜌. Often, one neglects the evolution of 𝑼, 𝑆, and 𝜌, which is then
already an important limitation.

If one focuses on the evolution of the mean magnetic field only, one often talks
about the mean-fields electrodynamics or quasi-kinematic mean-field theory, which
can still be nonlinear if the various mean-field transport coefficients depend on
the mean fields. If they are unaffected, one talks about kinematic mean-field theory,
which is linear. Of course, once there is a dynamo, we have an exponentially growing
solution, so the magnetic field would grow without limit, i.e., it would not saturate
within kinematic mean-field theory. Obviously, a correct mean-field theory must be
nonlinear, but even within the realm of linear theory, there are important lessons to
be learnt. Below, we discuss the aspects of nonlocality, which were often omitted out
of ignorance, but nowadays we know that this is often not possible and this restriction
can easily be relaxed.

Nonlocality. The mean magnetic field is governed by the mean induction equa-
tion, which is sometimes also referred to as the mean-field dynamo equation. The
most important term here is the electromotive force,

E = 𝒖 × 𝒃, (1)

i.e., the averaged cross product of velocity and magnetic fluctuations. In mean-field
electrodynamics, it is often expressed as

E𝑖 = E0𝑖 + 𝛼𝑖 𝑗𝐵 𝑗 + [𝑖 𝑗𝑘𝜕𝐵 𝑗/𝜕𝑥𝑘 + ..., (2)
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where the ellipsis denotes higher derivative terms, of which there should be infinitely
many, and there should also be time derivatives. The term E0𝑖 is a contribution that
can exist already in the absence of a mean field; see Brandenburg and Rädler (2013)
for details and numerical experiments. Including only a finite number of derivatives
in Eq. (2) and ignoring time derivatives is another important approximation. In fact,
it is usually easier to express E as a convolution between an integral kernel and the
mean field. Furthermore, it is instructive to split the integral kernel into two pieces
and write

E𝑖 = E0𝑖 + �̂�𝑖 𝑗 ∗ 𝐵 𝑗 + [̂𝑖 𝑗𝑘 ∗ 𝜕𝐵 𝑗/𝜕𝑥𝑘 , (3)

where the asterisks mean a convolution in space and time, and the hats denote
integration kernels. In principle, the spatial derivative can be absorbed as being part
of the integral kernel, but separating the kernel into �̂�𝑖 𝑗 and [̂𝑖 𝑗𝑘 has conceptual
advantages, because they preserve the similarity to Eq. (2). Note also that, unlike
Eq. (2), where we allowed for arbitrarily many derivatives, here, we have no other
terms, because all even derivatives are already absorbed in �̂�𝑖 𝑗 and all odd derivatives
are absorbed in [̂𝑖 𝑗𝑘 . Time derivatives can also absorbed in both of them if the
convolution with the kernels is also over time.

For the benefit of better interpretation, both 𝛼𝑖 𝑗 and [𝑖 𝑗𝑘 (and analogously also
for �̂�𝑖 𝑗 and [̂𝑖 𝑗𝑘 ) can be broken down into further pieces. The 𝛼𝑖 𝑗 tensor can be split
into a symmetric and an antisymmetric tensor. The latter is characterized by a vector,
𝛾𝑖 = − 1

2 𝜖𝑖 𝑗𝑘𝛼 𝑗𝑘 , which corresponds to a pumping velocity. Having in mind that the
magnetic gradient tensor can also be split into symmetric and antisymmetric parts,
where the latter is the mean current density, 𝑱, with 𝐽𝑖 = − 1

2 𝜖𝑖 𝑗𝑘𝜕𝐵 𝑗/𝜕𝑥𝑘 , we can
separate the rank-3 tensor, [𝑖 𝑗𝑘 , into a rank-2 tensor operating only on 𝑱 and the rest
operating on the symmetric part of 𝜕𝐵 𝑗/𝜕𝑥𝑘 .

The convolution can only be replaced by a multiplication, as in Eq. (2), if the
mean field is constant in time (which is normally never the case!) and if it varies at
most linearly in space (which is normally also not the case). We return to this point
further below.

Avoiding SOCA. Another approximation that is often discussed has to do with
the correct calculation of the coefficients or the corresponding 𝛼𝑖 𝑗 and [𝑖 𝑗𝑘 kernels. It
results from the fact that the differential equations for these expressions are nonlinear
and therefore hard to solve analytically. But this is not really a problem when one can
calculate numerical solutions of the underlying differential equations. This is done
in what is called the test-field method (Schrinner et al, 2005, 2007), which will also
be explained below.

In summary, the limitations discussed so far are in principle all avoidable: (i)
Evolution equations for𝑼, 𝑆, and 𝜌 can (and have been) included, in addition to that
for 𝑩, but in practice, even this is still an approximation in the sense that the full
set of equations is not (or only approximately) known. (ii) The electromotive force
can (and has been) solved as a convolution. In practice, this is cumbersome, but it is
possible to approximate this by a differential equation for E of the form
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Fig. 1 Top: Dependences of the normalized �̃� and [̃t on the normalized wavenumber 𝑘/𝑘f for
isotropic turbulence forced at wavenumbers 𝑘f/𝑘1 = 5 with ReM = 10 (squares) and 𝑘f/𝑘1 = 10
with ReM = 3.5 (triangles), all with a/[ = 1, using data from Brandenburg et al (2008). The solid
lines give the Lorentzian fits (5). Bottom: Normalized integral kernels �̂� and [̂t versus 𝑘f Z for
isotropic turbulence forced at wavenumbers 𝑘f/𝑘1 = 5 with ReM = 10 (squares) and 𝑘f/𝑘1 = 10
with ReM = 3.5 (triangles), all with a/[ = 1. The solid lines are defined by (6). Adapted from
Brandenburg et al (2008).

(
1 + 𝜏

𝜕

𝜕𝑡
− ℓ2∇2

)
E𝑖 = 𝛼𝑖 𝑗𝐵 𝑗 + [𝑖 𝑗𝑘𝜕𝐵 𝑗/𝜕𝑥𝑘 . (4)

This has been considered in several papers (Rheinhardt and Brandenburg, 2012;
Rheinhardt et al, 2014; Brandenburg and Chatterjee, 2018). (iii) Numerical solutions
can be employed to have precise expressions for 𝛼𝑖 𝑗 and [𝑖 𝑗𝑘 ; see Warnecke et al
(2018, 2021) for doing this for solar simulations using the test-field method. It often
turns out that analytical closure techniques are very useful as a first orientation
and they are often also accurate enough for a qualitatively useful model. In special
cases, when an accurate solution is required, the answer may well be obtained
numerically using the test-field method. The problem is then only that numerical
solutions themselves are limited in just the same way as those for a full numerical
solution in the solar and stellar dynamo problems.

Figure 1 shows results for �̃�(𝑘) and [̃t (𝑘) with a/[ = 1. Both �̃� and [̃t decrease
monotonously with increasing |𝑘 |. The functions �̃�(𝑘) and [̃t (𝑘) are well represented
by Lorentzian fits of the form

�̃�(𝑘) ≈ 𝛼0

1 + (𝑘/𝑘f)2 , [̃t (𝑘) ≈
[t0

1 + (𝑘/2𝑘f)2 . (5)
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The kernels �̂�(Z) and [̂t (Z) in the lower part of Figure 1 are obtained numerically.
Also shown are the Fourier transforms of the Lorentzian fits,

�̂�(Z) ≈ 1
2𝛼0𝑘f exp(−𝑘f |Z |) , [̂t (Z) ≈ [t0𝑘f exp(−2𝑘f |Z |) . (6)

We see that the profile of [̂t is half as wide as that of �̂�.
The use of mean-field theory. If mean-field theory cannot reliably be applied

to a regime outside that of the direct numerical simulations (DNS), one must ask
what is then the use of mean-field theory. The answer lies in the fact that mean-field
theory provides us with a diagnostic “tool” for approaching the problem. Particular
features of a solution can usually be attributed to particular terms in the mean-field
equation. This would then allow as a more informed answer by saying that the main
dynamo mechanism is, for example, of 𝛼Ω type, or of the type of a shear flow
dynamo, for example. Thus, mean-field theory may be regarded as a convenient tool
for understanding what is going on rather than predicting what might be going on.

3 The catastrophic quenching problem

Since the 1990s, a problem emerged in that numerical dynamo solutions were found
to depend on the value of the microphysical magnetic diffusivity. Typically, the
strengths of the mean-fields then decreases with increasing magnetic Reynolds num-
ber. This is unusual and does not have any correspondence with ordinary hydrody-
namics where the large-scale dynamics is usually already captured at moderate fluid
Reynolds numbers. In its original form, the catastrophic quenching problem refers
to the finding that the volume-averaged electromotive force scales with the micro-
physical magnetic diffusivity, and thus goes to zero when [ → 0. To some extent,
this is a problem related to the use of periodic boundary conditions. However, even
for astrophysically more realistic boundary conditions, numerical simulations reveal
that there is still a problem.

3.1 Mean fields in periodic domains

Under astrophysical conditions of interest, [ is so small that the volume-average
electromotive force would be negligibly small. If this result was actually astrophysi-
cally relevant, it would be a “catastrophe,” i.e., it would not be possible to understand
astrophysical magnetic fields as mean-field dynamos. The solution to this particular
problem turned out to be that relating the volume-averaged electromotive force to
the volume-averaged mean magnetic field is only of limited relevance to the problem
of 𝛼 effect dynamos. Any dynamo would produce a non-uniform field. Especially in
a periodic domain, the mean magnetic flux through any of the faces of the periodic
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domain is constant in time, so if it was zero to begin with, it would always remain
zero. A dynamo problem can therefore not be formulated in that case.

A proper dynamo problem should always allow for the possibility of the magnetic
field to decay to zero if there is sufficient magnetic diffusivity. Simple examples of
nontrivial mean fields in a periodic domain are Beltrami fields of the form

𝑩(𝑥) ∝ ©«
0

sin 𝑘𝑥

cos 𝑘𝑥

ª®¬ , 𝑩(𝑦) ∝ ©«
cos 𝑘𝑦

0
sin 𝑘𝑦

ª®¬ , or 𝑩(𝑧) ∝ ©«
sin 𝑘𝑧

cos 𝑘𝑧
0

ª®¬ , (7)

which can be solutions of the simple 𝛼2 dynamo problem, 𝜕𝑩/𝜕𝑡 = 𝛼∇×𝑩+[T∇2𝑩.
Nevertheless, there is still a problem of catastrophic nature because it turned out
that the time required to reach the final solution scales inversely with [. This is
demonstrated in Figure 2, where we show the evolution of one of the three planar
averages. In the beginning, all three mean fields grow in a similar fashion, but at
some point, only one of the three reaches a significant amplitude. Note, however,
that the ultimate saturation takes a resistive time, 𝜏res = 1/(2[𝑘2

1).

3.2 Quenching phenomenology

To understand the reason for the catastrophically slow saturation, it suffices to con-
sider the magnetic helicity equation,

d
d𝑡
〈𝑨 · 𝑩〉 = −2[`0〈𝑱 · 𝑩〉 − ∇ · (𝑬 × 𝑨 +Φ𝑩) , (8)

which follows directly from the uncurled induction equation,

𝜕𝑨

𝜕𝑡
= 𝑼 × 𝑩 − [`0𝑱 − ∇Φ. (9)

For periodic domains, we just have

d
d𝑡
〈𝑨 · 𝑩〉 = −2[`0〈𝑱 · 𝑩〉. (10)

This equation is gauge-independent, because the gauge transformation 𝑨 → 𝑨′+∇Λ
yields 〈𝑨 · 𝑩〉 = 〈𝑨′ · 𝑩〉, with 〈𝑩 · ∇Λ〉 = 〈∇ · (Λ𝑩)〉 − 〈Λ∇ · 𝑩〉 = 0, because
∇ · 𝑩 = 0 and the domain is periodic, so the average of a divergence vanishes.

For fully helical large-scale and small-scale magnetic fields of opposite magnetic
helicity, Eq. (10) becomes (Brandenburg, 2001)

d
d𝑡
〈𝑩2〉 = 2[𝑘1𝑘f𝐵

2
eq − 2[𝑘2

1〈𝑩
2〉, (11)

with the solution
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Fig. 2 Evolution of the normalized 〈𝑩2 〉 and that of 〈𝑩2 〉 + 𝜏diffd〈𝑩2 〉/d𝑡 (dotted), compared
with its average in the interval 1.2 ≤ 𝑡/𝜏diff ≤ 3.5 (horizontal blue solid line), as well as averages
over three subintervals (horizontal red dashed lines). The green dashed line corresponds to Eq. (12)
with 𝑡sat/𝜏diff = 0.54. Adapted from Candelaresi and Brandenburg (2013).

〈𝑩2〉 = 𝐵2
eq
𝑘f
𝑘1

[
1 − 𝑒−2[𝑘2

1 (𝑡−𝑡sat)
]
. (12)

This agrees with the slow saturation behavior seen first in the simulations of Bran-
denburg (2001); see Figure 2. Here 𝑡sat is the time when the slow saturation phase
commences; see the crossing of the green dashed line with the abscissa. Interestingly,
instead of waiting until full saturation is accomplished, one can obtain the saturation
value already much earlier simply by differentiating the simulation data to compute
(Candelaresi and Brandenburg, 2013)

𝐵2
sat ≈ 〈𝑩2〉 + 𝜏res

d
d𝑡
〈𝑩2〉. (13)

Since 𝜏res involves the microphysical magnetic diffusivity, the quenching is still in
that sense catastrophic.

3.3 The 𝜶 quenching formula

A more complete description is in terms of kinetic and magnetic 𝛼 effects, i.e.,

𝛼 = 𝛼K + 𝛼M ∼≈ 𝜏

3

(
𝝎 · 𝒖 − 𝒋 · 𝒃/𝜌

)
, (14)

and observing the fact that the magnetic helicity evolution of averages and fluctua-
tions is given by

d
d𝑡
〈𝑨 · 𝑩〉 = +2〈E · 𝑩〉 − 2[`0〈𝑱 · 𝑩〉, (15)
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d
d𝑡
〈𝒂 · 𝒃〉 = −2〈E · 𝑩〉 − 2[`0〈 𝒋 · 𝒃〉. (16)

Equation (15) allows for the possibility that magnetic helicity can be produced by
the mean electromotive force, because, in general, E · 𝑩 ≡ 𝒖 × 𝑩 · 𝑩 ≠ 0. (By
contrast, of course, (𝒖 × 𝑩) · 𝑩 = 0.) In particular, if E = 𝛼𝑩 − [t`0𝑱, then,
E · 𝑩 = 𝛼𝑩

2 − [t`0𝑱 · 𝑩, which produces positive (negative) magnetic helicity of
the mean field when 𝛼 > 0 (𝛼 < 0)

Equation (16) is constructed such that the sum of Eqs. (15) and (16) yields
Eq. (10). Given that 〈𝒂 · 𝒃〉 is related to 〈 𝒋 · 𝒃〉, which, in turn, is related to a
magnetic contribution to the 𝛼 effect (Pouquet et al, 1976), Eq. (16) can be rewritten
as an evolution equation for the total 𝛼 (Brandenburg, 2008),

d𝛼M
d𝑡

= −2[t0𝑘
2
f

(
𝛼𝑩

2 − [t`0𝑱 · 𝑩
𝐵2

eq
+ 𝛼M

ReM

)
, (17)

which can also be expressed in the form

𝛼(𝑩) = 𝛼0 + ReM × “extra terms”

1 + ReM𝑩
2/𝐵2

eq

(18)

where

“extra terms” = [t
`0𝑱 · 𝑩
𝐵2

eq
− ∇ · F

2𝑘2
f 𝐵

2
eq

− 𝜕𝛼/𝜕𝑡
2𝑘2

f 𝐵
2
eq
. (19)

Note that the last term is here a time derivative. Equation (18) resembles the catas-
trophic quenching formula of Vainshtein and Cattaneo (1992), but it also shows that
it need to be extended in several important ways: when the mean field is no longer
defined as a volume average, extra terms emerge that are of the same order as those
in the denominator. They can therefore potentially offset the catastrophic quenching.
In practice, this is only partially true, because there are also other terms, for example
the aforementioned time derivative term. It is responsible for the fact that a strong
field state is only reached after a resistively long time.

3.4 Analogy with the chiral magnetic effect

The 𝛼 effect in mean-field dynamo theory is an effect that emerges after averaging
over the scale of several turbulent eddies. We know already that turbulent diffusion is
somewhat analogous to microphysical diffusion, which also emerges after averaging,
but here after averaging over atomic scales. Interestingly, even for the 𝛼 effect there
can be an effect on atomic and subatomic scales, because fermions, such as electrons,
are chiral. The spin of an electron emerging from the decay of a neutron is anti-aligned
with its momentum vector, so their dot product is a negative pseudo-scalar, called the
chirality. Positrons have positive chirality. In the presence of an ambient magnetic
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field, the spins align, but electrons and positrons move in opposite directions, causing
therefore an electric current. This constitutes a microscopic 𝛼 effect (Rogachevskii
et al, 2017; Brandenburg et al, 2017c),

𝛼micro ≡ `5[ = 24𝛼fine (𝑛L − 𝑛R) (ℏ𝑐/𝑘B𝑇)2, (20)

where `5 is the normalized chiral chemical potential (with units of inverse length),
[ is the microscopic magnetic diffusivity, 𝛼fine ≈ 1/137 is the fine structure constant
(quantifying the strength of electromagnetic interaction between charged particles),
𝑛L and 𝑛R are the number densities of left- and right-handed fermions, ℏ ≈ 10−27 erg s
is the reduced Planck constant, 𝑐 ≈ 3 × 1010 cm s−1 is the speed of light, 𝑘B ≈
10−16 erg K−1 is the Boltzmann constant, and 𝑇 is the temperature.

The applications of chiral MHD are manifold and range from condensed matter
systems and heavy ion collisions to neutron stars and the early Universe; see Kharzeev
(2014) for a review. Interestingly, because this microscopic 𝛼 effect produces helical
magnetic fields, and because the total chirality is conserved (Boyarsky et al, 2012),
this effect does not last forever, but is being quenched in a form analogous to the
catastrophic quenching formula, which takes the form (Rogachevskii et al, 2017)

𝜕`5
𝜕𝑡

= −_[
(
`5𝑩

2 − [t`0𝑱 · 𝑩
)
− Γflip`5, (21)

where _ is a coupling constant which, in the catastrophic quenching formalism,
is related to 2[t𝑘

2
f /𝐵

2
eq, and Γflip is a spin-flipping parameter, which is related to

2[𝑘2
f in the catastrophic quenching formalism (see, e.g., Field and Blackman, 2002;

Blackman and Brandenburg, 2002).
There is a vast range of recent work in this field, which goes well beyond the

scope of the present paper. We just mention here the paper of Masada et al (2018),
who studied chiral magnetohydrodynamic turbulence in core-collapse supernovae.
They found that the inverse cascade related to the chiral effects impacts the magne-
tohydrodynamic evolution in the supernova core toward explosion.

3.5 Magnetic helicity fluxes and helicity reversals

Magnetic helicity fluxes could in principle remove the catastrophic quenching prob-
lem, but only if preferentially small-scale magnetic helicity is being removed (Klee-
orin et al, 2000a). To see this, let us first consider the problem of an 𝛼2 dynamo in
insulating boundaries, i.e.,

d
d𝑡

𝑨 = 𝛼𝑩 − [T`0𝑱, with 𝜕𝑧𝐴𝑥 = 𝜕𝑧𝐴𝑦 = 𝐴𝑧 = 0. (22)
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Fig. 3 Magnetic helicity, current helicity, and magnetic helicity fluxes for Run A of Brandenburg
(2018) with ReM = 180. The kinetic helicity is shown in green and is found to be of similar
magnitude as the current helicity of the small-scale field. The second panel shows 𝑬 × 𝑨 near zero.
The green line denotes 𝜙𝒃, which is seen to fluctuate around zero.

The boundary condition implies that 𝐵𝑥 = 𝐵𝑦 = 0, and is therefore also referred to
as the vertical field condition. In this 1-D problem, however, this boundary condition
is equivalent to a proper vacuum boundary condition.

The 𝛼2 dynamo with this boundary condition was first considered by Gruzinov
and Diamond (1994), who found that the saturation field strength of such a dynamo
decreases with ReM. This was later confirmed by Brandenburg and Dobler (2001).
In Figure 3, we show the profiles of magnetic helicity, current helicity, and the
magnetic helicity fluxes for Runs A of Brandenburg (2018) with ReM = 180. For
normalization purposes, they defined the reference values

𝐶f0 = 𝑘f𝐵
2
eq and 𝐹m0 = [t0𝑘

2
1

∫ 𝜋/2

0
𝑩

2 d𝑧. (23)

They emphasized that the largest contribution to the magnetic helicity density comes
from the large-scale field. Near the surface (𝑧 = 𝜋/2), the (negative) magnetic helicity
flux from small-scale fields is only about 0.02 𝐹m0, which explains why they are
not efficient enough to alleviate the catastrophic dependence of the resulting mean
magnetic field (Del Sordo et al, 2013; Rincon, 2021).

Subsequent simulations with an outside corona indicated that the magnetic heli-
city changes sign at or near the outer surface (Brandenburg et al, 2009). This was
just a speculation and needs to be reconsidered with the help of global models of the
type considered by Warnecke et al (2011, 2012) and Brandenburg et al (2017a). This
is shown in Figure 4, where we present the line-of-sight averaged current helicity
density, 〈𝑱 · 𝑩〉 in the plane of the sky using a simulation of Brandenburg et al
(2017a). The quantity 〈𝑱 · 𝑩〉 is a proxy of magnetic helicity at small scales and
shows clearly the reversal of sign between the dynamo interior and the exterior.
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Fig. 4 Current helicity 〈𝑱 · 𝑩〉 in the plane of the observer at four different times. Yellow and
white shades denote positive values and blue and black shades denote negative values; adapted
from Brandenburg et al (2017a).

3.6 Radial magnetic helicity reversal in the solar wind

If the idea of alleviating catastrophic quenching by magnetic helicity fluxes is to
make sense, when would expect to see signs of the expelled magnetic helicity to
see in the solar wind. The magnetic helicity spectrum can be measured in the solar
wind by determining the parity-odd contribution to the magnetic correlation tensor,
which, in Fourier space, takes the form

〈�̃�𝑖 (𝒌)�̃�∗
𝑗 (𝒌)〉 =

(
𝛿𝑖 𝑗 − �̂�𝑖 �̂� 𝑗

)
𝐸 (𝑘) − i�̂�𝑘𝜖𝑖 𝑗𝑘𝐻 (𝑘). (24)

This would allow one to compute 𝐻 (𝑘𝑧) = Im(�̃�𝑥 �̃�
∗
𝑦) and 𝐸 (𝑘𝑧) = 1

2 ( |�̃�𝑥 |2+|�̃�𝑦 |2),
which also obeys the realizability condition 𝑘𝑧 |𝐻 (𝑘𝑧) | ≤ 𝐸 (𝑘𝑧).

The Ulysses spacecraft was the only one to cover high heliographic latitudes,
where a non-vanishing sign of magnetic helicity can be expected. It turned out that
𝐻 (𝑘) has, as expected from dynamo theory, different signs in the northern and
southern hemispheres. It also has different signs at small and large wavenumbers.
This, in itself, is also expected from an 𝛼2 dynamo, because the 𝛼 effect produces
no net magnetic helicity, but it separates magnetic helicity in wavenumber space.
However, the signs are opposite to what is seen at the solar surface, where the
helicity in the north is negative at small length scales. In the solar wind, however, it
is positive in the north and at small scales. Of course, the meaning of small is here
relative and has to be with respect to larger scales, where a sign change in 𝑘 has
been seen. If one just assumed a linear expansion of all scales from the solar surface
(radius 𝑟 = 700 Mm, to the location of the Earth at 1 AU, we expect a corresponding
expansion ratio so that a wavenumber of 1 Mm−1 corresponds to 1/700 AU−1. In
particular, 20 Mm−1 corresponds to 2/70 AU−1, which is close to the wavenumber
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Fig. 5 Magnetic energy and magnetic helicity spectra for southern latitudes (a) at the solar surface
in active region AR 11158, and (b) in the solar wind at ∼ 1 AU distance (1 AU ≈ 149, 600 Mm).
Positive (negative) signs are shown as red open (blue filled) symbols. Positive signs are the solar
surface at intermediate and large 𝑘 correspond to positive values in the solar wind at small 𝑘. Note
that 1 G = 10−4 T = 105 nT.

where we see a sign-change in Figure 5. It is unexpected, however, that at the solar
surface (Figure 5b), the sign in the northern hemisphere changes from minus to plus
as 𝑘 increases, while in the solar wind, it changes from plus to minus. This apparent
mismatch may not just be a measurement error, but it may actually be a real result
and would tell us that the simpleminded picture of expelling magnetic helicity of
one sign all the way to infinity may not be accurate.

Looking at the evolution equation for the small scale magnetic helicity, we have

∇ ·F f = −2𝛼𝑩2 + 2[t`0𝑱 · 𝑩︸                    ︷︷                    ︸
−2E ·𝑩

−2[`0 𝒋 · 𝒃. (25)

In the dynamo interior at the northern hemisphere, 𝛼 > 0, and, assuming 𝛼𝑩2

to dominate the EMF, we expect −2E · 𝑩 to be negative. However, a negative flux
divergence of a negative quantity would eventually make this quantity positive, which
is what has been observed.

Whether or not this is really the right interpretation remains still an open question.
It would clearly be useful to have an independent assessment of this interpretation.

4 Alternative large-scale dynamo effects

Given the difficulties encountered with 𝛼 effect dynamos, there have been various
attempts to construct large-scale dynamos that are not based on the 𝛼 effect. A
common misconception here is that the idea that catastrophic quenching would not
apply if just because there is no 𝛼 effect, but it is not true. An 𝛼M term can always
emerge regardless of whether they existed original an 𝛼 effect or not. An example
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is shear–current effect. It is due to the presence of shear and boundaries that a
helicity can be introduced. Shear of the form𝑼 = (0, 𝑆𝑥, 0) implies a finite vorticity,
∇×𝑼 = (0, 0, 𝑆) and boundaries would lead to a gradient vector of turbulent intensity
near the boundaries. Thus, while there can be hope that catastrophic quenching may
not be as strong, this may turn out not to be the case. An example of this was
presented in Brandenburg and Subramanian (2005c).

4.1 Rädler and shear–current effects

The Rädler effect is another large-scale dynamo effect (Rädler, 1969). In the simplest
representation it leads to an EMF proportional to 𝛀 × 𝑱. It is similar to the shear–
current effect. In this case it cannot change the magnetic energy of the mean field.
Indeed, the energy equation for the mean field is given by

d
d𝑡
〈𝑩2/2〉 = 𝑱 · (𝛀 × 𝑱)︸        ︷︷        ︸

=0

+ 〈∇ · [(𝛀 × 𝑱) × 𝑩]〉︸                    ︷︷                    ︸
= 0 under periodicity

(26)

In the general case, the generation effects due to global rotation and mean currents
can be written as follows (see Krause and Rädler, 1980; Kitchatinov et al, 1994;
Rädler et al, 2003; Pipin, 2008):

E (𝛿)
= 𝛿1𝛀 × 𝑱 + 𝛿2∇

(
𝛀 · 𝑩

)
+ 𝛿3

𝛀
(
𝛀 · 𝑩

)
𝛀2 ∇

(
𝛀 · 𝑩

)
, (27)

where the coefficients 𝛿1,2,3 depend on the spatial profiles of the turbulent parameters
such as the typical convective turnover time, the convective velocity 𝑢rms, etc. The last
two terms in this equation may lead to an 𝛿2 dynamo (Pipin and Seehafer, 2009). For
the solar case, the 𝛿 effect can provide an additional non-helical source of poloidal
magnetic field generation. Interestingly, Pipin and Seehafer (2009) found that for the
solar-type dynamos, i.e., those with equatorward propagation of the dynamo waves,
the 𝛿 dynamo effect does not dominate the contributions of the 𝛼-effect. We will
discuss the available scenario in the next section.

4.2 Dynamos from negative turbulent magnetic diffusivity

There are two other effects that are noteworthy, although it is not clear that either
of them can play a role in stellar convection zones. One is the negative turbulent
magnetic diffusivity and the other is the memory effect in conjunction with a pumping
effect.
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When modeling a negative turbulent magnetic diffusivity dynamo, high wavenum-
bers must not be destabilized at the same time. Brandenburg and Chen (2020) studied
classes of dynamos with a very low critical ReM. The Willis dynamo (Willis, 2012)
has a critical ReM of2.01, which is small compared to 6.3 for the Roberts flow and
17.9 for the ABC flow. In this dynamo, one of the two horizontally averaged field
components grows exponentially, because the total magnetic diffusivity in that di-
rection is negative (Brandenburg and Chen, 2020). The other component decays and
is not coupled to the former one.

Fig. 6 Dependence of [̃𝑥𝑥 (red) and [̃𝑦𝑦 (blue) on 𝑘 for the Willis flow in the marginally exited
case with [ = 0.403. The dashed line denotes the fit −0.233+ 0.11 𝑘2. Adapted from Brandenburg
and Chen (2020).

As we see from Figure 6, [t is negative only for 𝑘 <∼ 1.5. The 𝑘 dependence of
the turbulent magnetic diffusivity can be expanded up to second order as

[̃𝑦𝑦 (𝑘) = [̃
(0)
𝑦𝑦 + [̃

(2)
𝑦𝑦 𝑘

2 + . . . , (28)

where the tildes indicate Fourier transformed quantities. In the proximity of 𝑘 = 1,
which corresponds to the largest scale in the computational domain of 2𝜋, we have
[̃
(0)
𝑦𝑦 ≈ −0.233 and [̃

(2)
𝑦𝑦 ≈ 0.11. In addition, there is still the microphysical magnetic

diffusivity, which is positive ([ = 0.403). To a first approximation, one can just
consider the equation for 𝐴𝑦𝑦 , which can then be written as

𝜕𝐴𝑦𝑦

𝜕𝑡
=

[
[ + [̃

(0)
𝑦𝑦

] 𝜕2𝐴𝑦𝑦

𝜕𝑧2 − [̃
(2)
𝑦𝑦

𝜕4𝐴𝑦𝑦

𝜕𝑧4 . (29)

We recall that the minus sign in front of the fourth derivative corresponds to positive
diffusion if [̃ (2)

𝑦𝑦 is positive, and so does the plus sign in front of the second derivative,
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unless the term in squared brackets is negative, which is the case we are considering
here.

4.3 Dynamos from pumping and memory effects

Pumping effects alone cannot usually lead to interesting dynamo effects, unless there
is also a memory effect. This effect means that the mean electromotive force depends
not just on the instantaneous mean magnetic field at that time, but also on the mean
magnetic field at earlier times. It is therefore described as a convolution between a
pumping kernel and the mean magnetic field. This can lead to dynamo action, as has
been demonstrated by Rheinhardt et al (2014) for the case of one of four flow fields
studied by Roberts (1972).

The example of Roberts flow III may be peculiar, because there is so far no other
known example of a flow where pumping produces a memory effect that is strong
enough to lead to dynamo action. This is mostly because the computational tools for
determining the memory effect are not broadly used by the community. Indeed, it
was only with the development of the test-field method (Schrinner et al, 2005, 2007)
that the importance of the memory effect was noticed (Hubbard and Brandenburg,
2009) and applied to pumping.

The dispersion relation for a problem with turbulent pumping 𝛾 and turbulent
magnetic diffusion [t is given by _ = −i𝑘𝛾 − [t𝑘

2. Since Re_ < 0, the solution can
only decay, but it is oscillating with the frequency 𝜔 = Im_ = 𝛾. In the presence of
a memory effect, 𝛾 is replaced by 𝛾/(1 − i𝜔𝜏), where 𝜏 is the memory time. Then,
_ ≈ −i𝑘𝛾 (1 − i𝜔𝜏) − [t𝑘

2, and Re_ can be positive if total. This is the case for the
Roberts flow.

We return to nonlocality and memory effects further below in this article when
we discuss concrete solar models; see Pipin (2023). One of the most obvious conse-
quences of the memory effect is a lowering of the critical excitation conditions for
the dynamo, which was already reported by Rheinhardt and Brandenburg (2012).
Interestingly, for the nonlocal mean electromotive force, the lowering of the critical
threshold can be accompanied by multiple instabilities of different dynamo modes
that have different frequencies and spatial localization; see Pipin (2023).

4.4 Dynamos from cross-helicity

An alignment of velocity and magnetic field, i.e., cross helicity, plays a key role in
numerous processes and phenomena of astrophysical plasmas. Krause and Rädler
(1980) showed that the saturation stage of the turbulent generation is characterized
by an alignment of the turbulent convective velocity and the magnetic field. This
consideration does not account for the effects of cross-helicity that take place in the
strongly stratified subsurface layers of the stellar convective envelope. For example,
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the direct numerical simulations of Matthaeus et al (2008) showed a directional
alignment of velocity and magnetic field fluctuations in the presence of gradients of
either pressure or kinetic energy.

The mean electromotive force in this case is along to the mean vorticity,

EΥ
= Υ∇ × U + . . . , (30)

where, Υ = 𝜏𝑐 〈u · b〉 is the cross helicity pseudoscalar, and 𝜏𝑐 is the turbulent
turnover time. Dynamo scenarios based on cross helicity have been suggested in
a number of papers (Yoshizawa and Yokoi, 1993; Yoshizawa et al, 2000; Yokoi,
2013). Pipin and Yokoi (2018) showed that the large-scale dynamo instability does
not require the existence of a global axisymmetric mean. The mix of axisymmetric
and nonaxisymmetric magnetic fields can be produced even in the case Υ = 0,
where the overbar means the azimuthal averaging. The surface magnetic field of the
Sun and other similar stars tends to be organized in sunspots, plagues, ephemeral
regions, super-granular magnetic network, etc. These structures tend to demonstrate
the alignment of local velocity and magnetic fields Rüdiger et al (2011). Therefore,
the cross helicity dynamo instability can contribute to dynamo generation effects
that operate near the stellar surface. Stellar observations, for example the results of
Katsova et al (2021), require such dynamo effects to be working in situ at the stellar
surface. The solar analogs show an increase of the spottiness with an increase of
the rotation rate (Berdyugina, 2005). In this case, cross helicity dynamo effects can
be considered as a relevant addition to the standard turbulent generation by means
of convective helical motions. Rapidly rotating M-dwarfs show the highest level of
the magnetic activity (Kochukhov, 2021). There is a population of rapidly rotating
M-dwarfs that show a rather strong dipole type magnetic field. These stars show
a rather small level of differential rotation. For solid body rotation, an 𝛼2 dynamo
generates nonaxisymmetric magnetic field Chabrier and Küker (2006); Elstner and
Rüdiger (2007). At high rotation rates, the 𝛼 effect is highly anisotropic Ruediger and
Kichatinov (1993). It cannot employ the component of the large-scale magnetic field
along the rotation axis for the generation of an axial electromotive force. Results of
Pipin and Yokoi (2018) show that the 𝛼2Υ2 scenario can produce a strong constant
dipole magnetic field. The model predicts the existence of large-scale cross helicity
patterns occupying the stellar surface. We hope that this can be tested either in
observations or in global convective simulations.

The nonlinear theory for the cross helicity effect is not yet developed. Sur and
Brandenburg (2009) showed that the turbulent generation due to Υ is quenched by
the large scale vorticity in a way that is similar to catastrophic quenching given by
Eq. (18), i.e.,

Υ ∼ 1
1 + ReM𝜏2

𝑐 (∇ × U)2
(31)

One should remember that for its initialization of the cross-helicity dynamo insta-
bility we have to seed both the cross helicity and the magnetic field. The solar type
models scenarios based on cross helicity require an 𝛼 effect, which produces poloidal
magnetic field and cross helicity at the top of the dynamo domain (Yokoi et al, 2016).
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Fig. 7 Normalized spectra of 𝐵𝑧 from a simulation of MHD turbulence with strong gravity at
turbulent diffusive times 𝑡 [t/𝐻 2

𝜌 ≈ 0.2, 0.5, 1, and 2.7 with 𝑘f𝐻𝜌 = 10 and 𝑘1𝐻𝜌 = 0.25. Adapted
from Brandenburg et al (2014).

Given that cross helicity is an ideal invariant of the MHD equations, it is natural to
ask whether systems with strong cross helicity exhibit inverse cascading. The answer
seems to be yes; see (Brandenburg et al, 2014). In Figure 7 we show the gradual
build-up of magnetic fields in the vertical direction when the system has significant
cross helicity owing to the presence of a magnetic field along the direction of gravity
(Rüdiger et al, 2011).

4.5 Origin of sunspots and active regions

An important goal in solar dynamo theory is to compute synthetic butterfly diagrams.
The question then emerges from which depth to take the mean toroidal field, for
example. The usual argument here is to invoke Parker’s theory of sunspot formation
and to postulate that the field at some depth translates directly to one at the surface.
This is critical because the final result depends on the assumed depth.

It is possible that sunspots are not deeply rooted, but are actually a surface
phenomenon. No successful and self-consistent model of shallow formation of active
regions or sunspots exists as yet. Noteworthy in this context is the negative effective
magnetic pressure instability (NEMPI), which is a mean-field theory of the Reynolds
and Maxwell stresses. This theory is extremely successful in that its results agree
remarkably well with direct numerical simulations (DNS).1 The problem is only
that the effect is not strong enough to make real sunspots or active regions. Because

1 DNS means that viscous and diffusive operators are assumed to be the physical ones, but with
coefficients that are enhanced relative to the physical ones, but as small as possible. Large eddy
simulations (LES) or implicit LES, by contrast, use just numerical schemes to keep the code stable.
Such schemes are often too complicated to state them as an explicit term in the equations, as if they
are negligible, but they never are.
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Fig. 8 Cuts of 𝐵𝑧/𝐵eq (𝑧) in the 𝑥𝑦 plane at the top boundary (𝑧/𝐻𝜌 = 𝜋) and the 𝑥𝑧 plane
through the middle of the spot at 𝑦 = 0. In the 𝑥𝑧 cut, we also show magnetic field lines and
flow vectors obtained by numerically averaging in azimuth around the spot axis. Adapted from
Brandenburg et al (2013).

of this remarkable agreement between theory and simulations, and because it is an
important mean-field process, we shall discuss here a bit more detail.

The essence of the effect is the contribution of the turbulent hydromagnetic
pressure to the horizontal force balance. The turbulent pressure is a small-scale
effect, but it reacts to the large-scale magnetic field. As the magnetic field increases,
it suppresses the turbulence locally, disturbing therefore the horizontal force balance.
Although this large-scale magnetic field itself contributes with its own magnetic
pressure to the horizontal force balance, the effect from the suppression of the
turbulence is often stronger, so the net effect is a negative one. This is why the
mean-field effect from a large-scale magnetic field is a negative effective magnetic
pressure. This idea goes back to early work of Kleeorin et al (1989, 1996), who
developed the mean-field theory for this effect.

In the beginning, it was not clear what kind of numerical experiments one could
try to test the a negative effective magnetic pressure effect. The first mean-field
simulations were done with a uniform horizontal magnetic field (Brandenburg et al,
2010). This led to the development of magnetic flux concentrations near the surface,
but those began to sink downward as time went on. A similar effect was soon also
seen in DNS (Brandenburg et al, 2011). The sinking of such structures was explained
by the negative effective magnetic pressure: a positive magnetic pressure would lead
to the rise of structures (Parker, 1967) while a negative one leads to a sinking. The
sinking of magnetic structures had the side effect that the structures disappeared
from the surface and became less prominent.

Subsequent experiments with a vertical field had a more dramatic effect on the
general appearance of structures. Because the ambient field was vertical, the down-
flow had little effect on the magnetic flux concentrations themselves (Brandenburg
et al, 2013). Figure 8 shows the spontaneous development of a magnetic spot.

Most of the numerical experiments where done with forced turbulence, where
one had explicit control over the degree of scale separation. This is not the case
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in convection, where the development of magnetic structures takes different shapes
(Stein and Nordlund, 2012; Masada and Sano, 2016; Käpylä et al, 2016b).

5 Mean-field dynamo models

The first mean-field model was constructed by Parker (1955). In his scenario the
toroidal magnetic field is generated from the dipole field by the nonuniform rotation.
To overcome restrictions of the Cowling’s theorem (Cowling, 1933), Parker suggested
that the dipole magnetic field can be regenerated by cyclonic convective motions
which transform emerging toroidal magnetic loops into poloidal magnetic field. The
coalescing loops can amplify in the dipole magnetic field. Studying the combing
action of the differential rotation and cyclonic motions he found a solution in form
of the dynamo wave and formulated conditions for the equatorward propagation
of the dynamo waves. Steenbeck et al (1966) and Steenbeck and Krause (1969)
constructed the theoretical basis of the mean-field theory, introduced the notion of
the mean electromotive force (MEMF) of the turbulence [see Eq. (2)] and showed that
the Parker’s effect of the cyclonic convective motions is an equivalent to the effective
MEMF along the large-scale field. The 1970s can be considered the golden years
of mean-field dynamo theory. Schuessler (1983) stated: “dynamo theory reached
the textbook state”, mentioning the famous monographs by Moffatt (1978), Parker
(1979), Krause and Rädler (1980), and Vainshtein et al (1980).

Indeed, the intensive theoretical and observational studies leaded to establishment
of the basic solar dynamo scenarios, identification the key dynamo parameters and
formation of general paradigm about nature of the solar and stellar magnetism.

Schuessler (1983) summarized that the mean-field dynamo models can reproduce
the “physics of solar activity to a great extent” including:

• the Hale polarity rule of sunspots groups
• the time-latitude evolution of the sunspot activity (“butterfly diagram”)
• reversals of the polar magnetic field
• the phase relationship between evolution of the poloidal and toroidal magnetic

field and their consistence with the butterfly diagram (Stix, 1976)
• rigid rotation of magnetic sector structure and coronal holes (Stix, 1974, 1977)
• chaotic variations of the dynamo activity as due to the random 𝛼 effect and the

dynamo nonlinearity because of the Lorentz force (Leighton, 1969; Yoshimura,
1978; Ruzmaikin, 1981)

• first models scenarios of the solar torsional oscillations (Schuessler, 1981;
Yoshimura, 1981)

We have to note that the first and second items are based on assumption the sunspot
groups are formed from the large-scale toroidal magnetic field. Already that time it
was well realized and acknowledged that the mean-field models needs to take into
account the fibril state of the magnetic field which we observed on the solar surface.
We return to this point later.
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The classical mean-field dynamo models utilize 𝛼Ω scenario using the differential
rotation (Ω effect) as the source of the toroidal magnetic flux production and the
𝛼 effect for the poloidal magnetic field generation. In general, the 𝛼 effect, as well
as any other turbulent generation effect, including 𝛿 effect (Rädler, 1969), shear-
current effect (Kleeorin et al, 2000b) and the cross-helicity effect (Yokoi, 2013)
can generate both the toroidal and poloidal magnetic fields. Therefore there can
be a number of possibility for the solar-types dynamo models Krause and Rädler
(1980); Yokoi et al (2016); Pipin and Kosovichev (2018). Some of them, e.g., skip
the 𝛼 effect at all. For example, Seehafer and Pipin (2009) studied 𝛿ΩΩ and 𝛿𝑊Ω

scenarios, where turbulent generation of the poloidal magnetic field is due to 𝛀 × 𝑱
and shear-current effect, respectively. These scenarios show oscillating solution and
correct time-latitude diagram of toroidal magnetic field if the meridional circulation
is included. Similar possibility was mentioned earlier by Krause and Rädler (1980)
for 𝛿Ω scenario. However, the given scenarios result to incorrect phase relation
between activity of the toroidal and poloidal magnetic field. The aim to search for
the 𝛼 effect alternatives pursues double benefits. Firstly, the nonhelical source of
dynamo generations avoid the above mentioned catastrophic quenching problem.
This issue is less important currently. Secondly, and it was already mentioned earlier
by Köhler (1973) as well as Steenbeck and Krause (1969) the mixing length estimate
of the 𝛼 effect for the solar convection zone parameters results in a very strong 𝛼

effect with a magnitude as strong as the convective velocity rms. Solar observations
of the ratio between the typical strength of the toroidal and poloidal fields and the
solar cycle period, favor an order of magnitude smaller 𝛼 effect. In addition, the
turbulent generation sources in the 𝛼Ω scenario help reduce the given constraints.
We must stress that the global convection dynamo simulations of Schrinner (2011),
Schrinner et al (2011), and Warnecke et al (2021) showed that the mean-field models
need a full spectrum of turbulent effects to describe DNS.

In the case of the solar-like star, i.e., with the solar-like stratification, differential
rotation, and meridional circulation profiles, the turbulent sources of the poloidal
magnetic field generation due to 𝛿, shear-current and cross-helicity effects are likely
complimentary to the 𝛼 effect.

We thus arrive at the conclusion that the 𝛼2Ω dynamo is, probably, the simplest
scenario for the solar dynamo. Also, this scenario seems to fit well in observations
of stellar activity of young solar-type stars.

5.1 Basic model

We discuss some results of the state of art mean-field dynamo model of the solar
dynamo developed recently by Pipin and Kosovichev (2019). The magnetic field
evolution is governed by the mean-field induction equation:

𝜕𝑩

𝜕𝑡
= ∇ ×

(
E +𝑼 × 𝑩 − [`0𝑱

)
. (32)
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The expression for the components of E reads as follows,

E𝑖 =
(
𝛼𝑖 𝑗 + 𝛾𝑖 𝑗

)
𝐵 𝑗 − [𝑖 𝑗𝑘∇ 𝑗𝐵𝑘 . (33)

Here, 𝛼𝑖 𝑗 describes the turbulent generation by the 𝛼 effect, 𝛾𝑖 𝑗 represents turbulent
pumping, and [𝑖 𝑗𝑘 is the eddy magnetic diffusivity tensor. The𝛼 effect tensor includes
the small-scale magnetic helicity density contribution, i.e., the pseudoscalar 〈a · b〉,

𝛼𝑖 𝑗 = 𝐶𝛼𝜓𝛼 (𝛽)𝛼K
𝑖 𝑗 + 𝛼M

𝑖 𝑗𝜓𝛼 (𝛽)
〈a · b〉 𝜏𝑐
4𝜋𝜌ℓ2

𝑐

, (34)

where 𝐶𝛼 is the dynamo parameter characterizing the magnitude the of the kinetic
𝛼 effect, and 𝛼K

𝑖 𝑗
and 𝛼M

𝑖 𝑗
are the anisotropic versions of the kinetic and magnetic

𝛼 effects, as described in PK19. The radial profiles of the 𝛼
(𝐻 )
𝑖 𝑗

and 𝛼
(𝑀 )
𝑖 𝑗

depend
on the mean density stratification, profile of the convective velocity 𝑢rms and on the
Coriolis number,

Co = 2Ω0𝜏𝑐 , (35)

where Ω0 is the global angular velocity of the star and 𝜏𝑐 is the convective
turnover time. The magnetic quenching function 𝜓𝛼 (𝛽) depends on the parame-
ter 𝛽 = |𝑩 |/(

√︁
4𝜋𝜌𝑢rms). In this model the magnetic helicity is governed by the

global conservation law for the total magnetic helicity, 〈A · B〉 = 〈a · b〉 + 𝑨 · 𝑩 (see
Hubbard and Brandenburg, 2012; Pipin et al, 2013):(

𝜕

𝜕𝑡
+𝑼 · ∇

)
〈A · B〉 = − 〈a · b〉

ReM𝜏𝑐
− 2[𝑩 · 𝑱 − ∇·F , (36)

where we have used 2[〈j · b〉 = 〈a · b〉 /ReM𝜏𝑐 (Kleeorin and Rogachevskii, 1999).
Also, we have introduced the diffusive flux of the small-scale magnetic helicity
density, F 𝜒 = −[𝜒∇ 〈a · b〉, and ReM is the magnetic Reynolds number, we employ
ReM = 106. Following results of Mitra et al (2010a) we put [𝜒 = 1

10[𝑇 . Here, the
turbulent fluxes of the magnetic helicity are approximated by the only term which
is related to the diffusive flux. Besides the diffusive helicity flux, the other turbulent
fluxes of the magnetic helicity can be important for the nonlinear dynamo regimes
and the catastrophic quenching problem (Kleeorin et al, 2000b; Vishniac and Cho,
2001; Pipin, 2008; Chatterjee et al, 2011; Brandenburg and Subramanian, 2005a;
Kleeorin and Rogachevskii, 2022; Gopalakrishnan and Subramanian, 2023). The
relative importance of the different kind helicity fluxes for the dynamo should be
studied further.

The above ansatz of the helicity evolution differs from that given by Eq. (16);
see also papers by Kleeorin and Ruzmaikin (1982); Kleeorin and Rogachevskii
(1999). Hubbard and Brandenburg (2012) had been studying the magnetic helicity
evolution for the shearing dynamos. They found that employing Eq. (16) in the
dynamo problem can result in nonphysical fluxes of magnetic helicity over spatial
scales. For this ansatz given by Eq. (16), the nonlinear dynamo models can show
the sharp magnetic structures inside the dynamo model domain. Such structures are
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connected with concentrations of the magnetic helicity; see, e.g., Chatterjee et al
(2011) and Brandenburg and Chatterjee (2018). Even a strong diffusive helicity flux
does not seem to correct those irrelevant features from the numerical solution. The
technical point is that the helicity fluxes, which are involved in Eq. (16), should be
consistent with the turbulent effects involved in the mean electromotive force, e.g.,
the rotationally induced anisotropy of the 𝛼 effect, the magnetic eddy diffusivity,
etc. Such calculation are currently absent. Also, we have to take into account the
modulation of the magnetic helicity density by the magnetic activity. On the other
hand, with the magnetic helicity evolution equation Eq. (36), Pipin et al (2013) found
that magnetic helicity density follows the large-scale dynamo wave. This alleviates
the catastrophic quenching of the 𝛼 effect. They showed that if we write the Eq. (36)
in the form of Eq. (16), we get an additional helicity flux due to the global dynamo,
Rewriting Eq. (36) in the form of Eq. (16) we get

𝜕 〈a · b〉
𝜕𝑡

= −2
(
E · 𝑩

)
− 〈a · b〉

ReM𝜏𝑐
+∇ ·

(
[𝜒∇ 〈a · b〉

)
−[B ·J−∇ ·

(
E × 𝑨

)
+ . . . , (37)

where . . . includes additional helicity transport terms due to the large-scale flow.
The term

(
E × A

)
consists of the counterparts of the sources magnetic helicity,

which are represented by −2E · B, and the fluxes which result from pumping of the
large-scale magnetic fields. The sources magnetic helicity in the term −2

(
E · 𝑩

)
are partly compensated in Eq. (37) by the counterparts in

(
E × 𝑨

)
. This results in

the spatially homogeneous quenching of the large-scale magnetic generation and
alleviation of the catastrophic quenching problem. The effect of

(
E × 𝑨

)
was not

unambiguously confirmed in DNS because of limited numerical resolution; see Del
Sordo et al (2013) and Brandenburg (2018).

The turbulent pumping, which is expressed by the antisymmetric tensor 𝛾𝑖 𝑗 . The
tuning of 𝛾𝑖 𝑗 for the solar-type mean-field dynamo model was discussed by Pipin
(2018). We define it as follows,

𝛾𝑖 𝑗 = 𝛾
(Λ𝜌)
𝑖 𝑗

+ 𝛼MLT𝑢rms
𝛾

H (𝛽) r̂nYinj, (38)

𝛾
(Λ𝜌)
𝑖 𝑗

= 3a𝑇 𝑓
(𝑎)

1

{(
𝛀 · 𝚲(𝜌)

) Ω𝑛

Ω2 Yinj −
Ω 𝑗

Ω2 YinmΩnΛ
(𝜌)
m

}
(39)

where 𝚲(𝜌) = ∇ log 𝜌 , 𝛼MLT = 1.9 is the mixing-length theory parameter, 𝛾 is the
adiabatic law constant. In Eq. (38), the first term takes into account the mean drift of
large-scale field due the gradient of the mean density, and the second one does the
same for the mean-field magnetic buoyancy effect. The function H (𝛽) takes into
account the effect of the magnetic tensions. It is H (𝛽) ∼ 𝛽2 for the small 𝛽 and it
saturates as 𝛽−2 for 𝛽 � 1; see P22.

We employ an anisotropic diffusion tensor following the formulation of Pipin
(2008) (hereafter, P08):
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[𝑖 𝑗𝑘 = 3[𝑇
{(

2 𝑓 (𝑎)1 − 𝑓
(𝑑)

2

)
Y𝑖 𝑗𝑘 + 2 𝑓 (𝑎)1

Ω𝑖Ω𝑛

Ω2 Y 𝑗𝑛𝑘

}
, (40)

where functions 𝑓
(𝑎,𝑑)

1,2 (Ω∗) are determined in P08. Analytical calculations of E
in the above cited paper includes effects of the small scale dynamo. In the above
expressions of the E we assume an equipartition condition between kinetic energy of
the turbulence and magnetic fluctuations which stem from the small-scale dynamo.
It was found that for the case of slow rotation (𝐶𝑜 � 1), the part of E that depends
on the gradients of 𝑩 consists of an isotropic eddy diffusivity and Rädler’s 𝛀 × 𝑱
effect due to the small-scale dynamo (see also Rädler et al, 2003). In the case of rapid
rotation, the fluctuating magnetic fields from the small-scale dynamo contribute both
to isotropic and anisotropic parts of the diffusivity. The effect appears already in the
terms of order Ω2 in the global rotation rate (Rädler et al, 2003). In particular, the
part of emf which corresponds to Eq(40 can be written as follows,

E [
= −3[𝑇

(
2 𝑓 (𝑎)1 − 𝑓

(𝑑)
2

)
𝑱 + 6[𝑇 𝑓

(𝑎)
1 𝛀

𝛀 · 𝑱
Ω2 . (41)

It is noteworthy that the full expression of E obtained in P08 is complicated and
includes different other contributions due to effects of global rotation 𝛀, mean shear,
mean current, 𝑱, and the magnetic deformation tensor (∇𝑩). We skip them in the
application to the solar dynamo model. The analytical results about the relations of
the specific effects of the E and the global rotation rate show a qualitative agreement
with the DNS of Käpylä et al (2009a); Brandenburg et al (2012). Yet, a detailed
comparison of the analytical results and the global convective simulations is needed;
for further discussions, see Sect. 7.

We assume that the large-scale flow is axisymmetric. It is decomposed into sum
of the meridional circulation and differential rotation, U = U𝑚 + 𝑟 sin \Ω (𝑟, \) 𝝓,
where 𝑟 is the radial coordinate, \ is the polar angle, 𝝓 is is the unit vector in az-
imuthal direction, andΩ (𝑟, \) is the angular velocity profile. The angular momentum
conservation and the equation for the azimuthal component of large-scale vorticity,
𝜔 = (∇ × Um)𝜙 , determine distributions of the differential rotation and meridional
circulation:

𝜕

𝜕𝑡
𝜌𝑟2 sin2 \Ω = −∇ ·

[
𝑟 sin \𝜌

(
T̂𝜙 + 𝑟 sin \ΩUm)]

+ ∇ ·

[
𝑟 sin \

𝑩𝐵𝜙

4𝜋

]
, (42)

𝜕𝜔

𝜕𝑡
= 𝑟 sin \∇ ·

[
𝝓 × ∇ · 𝜌T̂
𝑟𝜌 sin \

− U𝑚
𝜔

𝑟 sin \

]
+ 𝑟 sin \

𝜕Ω2

𝜕𝑧
− 𝑔

𝑐𝑝𝑟

𝜕𝑠

𝜕\

+ 1
4𝜋𝜌

(
𝑩 · ∇

) (
∇ × 𝑩

)
𝜙
− 1

4𝜋𝜌

[(
∇ × 𝑩

)
· ∇

]
𝐵𝜙 ,

where T̂ is the turbulent stress tensor:
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Fig. 9 (a) Streamlines of meridional circulation and the angular velocity distribution; the magnitude
of circulation velocity is of 13 m/s on the surface at the latitude of 45◦. (b) Radial profiles of [T+[| | ,
the rotationally induced part [| | , as well as aT. (c) Radial profiles of the 𝛼 tensor at 45◦ latitude.
(d) Streamlines of effective drift velocity from magnetically affected pumping and meridional
circulation. Reproduced by permission from Pipin (2022).

𝑇𝑖 𝑗 =
〈
𝑢𝑖𝑢 𝑗

〉
− 1

4𝜋𝜌

(〈
𝑏𝑖𝑏 𝑗

〉
− 1

2
𝛿𝑖 𝑗

〈
b2〉) , (43)

(see detailed description in Pipin and Kosovichev, 2018, 2019, hereafter PK19). Also,
𝜌 is the mean density, 𝑠 is the mean entropy; 𝜕/𝜕𝑧 = cos \𝜕/𝜕𝑟−sin \/𝑟 ·𝜕/𝜕\ is the
gradient along the axis of rotation. The mean heat transport equation determines the
mean entropy variations from the reference state due to the generation and dissipation
of the large-scale magnetic field and large-scale flows:

𝜌𝑇

[
𝜕s
𝜕𝑡

+
(
U · ∇

)
s
]
= −∇ · (F𝑐 + F𝑟 ) − 𝑇𝑖 𝑗

𝜕𝑈𝑖

𝜕𝑟 𝑗
− E · 𝑱, (44)

where 𝑇 is the mean temperature, F𝑟 is the radiative heat flux, F𝑐 is the anisotropic
convective flux (see PK19). The last two terms in Eq. (44) take into account the
convective energy gain and sink caused by the generation and dissipation of LSMF
and large-scale flows. The reference profiles of mean thermodynamic parameters,
such as entropy, density, and temperature are determined from the stellar interior
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model MESA (Paxton et al, 2015). The radial profile of the typical convective
turnover time, 𝜏𝑐 , is determined from the MESA code, as well. We assume that 𝜏𝑐
does not depend on the magnetic field and global flows. The convective rms velocity
is determined from the mixing-length approximation,

𝑢c =
ℓ𝑐

2

√︄
− 𝑔

2𝑐𝑝
𝜕𝑠

𝜕𝑟
, (45)

where ℓ𝑐 = 𝛼MLT𝐻𝑝 is the mixing length, 𝛼MLT = 1.9 is the mixing length parameter,
and 𝐻𝑝 is the pressure height scale. Equation (45) determines the reference profiles
for the eddy heat conductivity, 𝜒𝑇 , eddy viscosity, a𝑇 , and eddy diffusivity, [𝑇 , as
follows,

𝜒𝑇 =
ℓ2

6

√︄
− 𝑔

2𝑐𝑝
𝜕𝑠

𝜕𝑟
, (46)

a𝑇 = PrT𝜒T, (47)
[𝑇 = PmTaT. (48)

It should be noted that stellar convection might well have convection zones with
slightly subadiabatic stratification in some layers. In those cases, the enthalpy flux
can no longer be transported entirely by the mean entropy gradient, but there can
be an extra term that is nowadays called the Deardorff term; see Deardorff (1972).
Such convection can be driven through the rapid cooling in the surface layers and
is therefore sometimes referred to as entropy rain Brandenburg (2016). It is useful
to stress that the Deardorff term is distinct from the usual overshoot, because there
the enthalpy flux points downward, while entropy rain still produces an outward
enthalpy flux. It is instead more similar to semiconvection.

Boundary conditions. At the bottom of the tachocline, 𝑟i = 0.68 𝑅 we put the
solid body rotation and the perfect conductor boundary conditions. Following to the
MESA solar interior model we put the bottom of the convection zone to 𝑟b = 0.728 𝑅.

At this boundary we fix the total heat flux, 𝐹conv
r + 𝐹rad

r =
𝐿★ (𝑟𝑏)
4𝜋𝑟2

𝑏

. We introduce

the decrease factor of exp (−100 𝑧/𝑅) for all turbulent coefficients (except the eddy
viscosity and eddy diffusivity), where 𝑧 is the distance from the bottom of the
convection zone. The decrease of the eddy viscosity and eddy diffusivity is confined
by one order of magnitude for the numerical stability. At the top, 𝑟t = 0.99 𝑅 we
employ the stress free and black body radiating boundary. Following ideas of Moss
and Brandenburg (1992) we formulate the top boundary condition in the form that
allows penetration of the toroidal magnetic field to the surface:

𝛿
[𝑇

𝑟top
𝐵

(
1 +

(
|𝐵 |
𝐵esq

))
+ (1 − 𝛿) E\ = 0, (49)

Free parameters. The model employs the number of free parameters, including
𝐶𝛼, the turbulent Prandtl numbers PrT and PrM,T, 𝛿, 𝐵esq, and the global rotation rate
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Ω0. For the solar case we use the period of rotation of solar tachocline determined
from helioseismology,Ω0/2𝜋=434 nHz (Kosovichev et al, 1997). The best agreement
of the angular velocity profile with helioseismology results is found for Pr𝑇 = 3/4.
Also, the dynamo model reproduces the solar magnetic cycle period, ∼ 20 years, if
Pm𝑇 = 10. Results of Pipin and Kosovichev (2011) showed that the parameters 𝛿

and 𝐵esq affect the drift of the equatorial drift of the toroidal magnetic field field in
the subsurface shear layer and magnitude of the surface toroidal magnetic field. The
solar observations show the magnitude of surface toroidal field about 1-2 G (Vidotto
et al, 2018). To reproduce it we use 𝛿 = 0.99 and 𝐵esq = 50G. In what follows we
demonstrate results of the solar dynamo model for the slightly supercritical parameter
𝐶𝛼 (10% above the threshold). Further details of the dynamo model can be found in
Pipin and Kosovichev (2019).

The Figure 9 illustrates profiles of the basic turbulent effects and large-scale flow
distributions for the nonmagnetic case. The amplitude of the meridional circulation
on the surface is about 13 m s−1. In the low part of the convection zone the equator-
ward flow is about 1 m s−1. The angular velocity distribution is in agreement with
the helioseismology data.

Interestingly, the stagnation point of the meridional circulation is near lower
boundary of the subsurface shear layer, i.e., at 𝑟 = 0.9 𝑅. This is in agreement with
observations of Hathaway (2012) and the helioseismic inversions of Stejko et al
(2021). The structure of meridional circulation and turbulent pumping promotes an
effective equatorward drift of the toroidal magnetic field below the subsurface shear
layer; see Figure 9(d).

5.2 Parker–Yoshimura dynamo waves and extended cycle

The dynamo shown in Figure 10 demonstrates the numerical solution of the dynamo
system including Eqs. (32) and (42)–(44). The time latitude diagrams of the surface
radial magnetic field and the toroidal magnetic field in the upper part of the convection
zone show agreement with observations of evolution the large-scale magnetic field
of the Sun (Hathaway, 2015; Vidotto et al, 2018, see also the review of Righmire in
this volume). The dynamo waves propagate to the surface equatorward. The radial
direction of propagation follows the Parker–Yoshimura rule because of positive sign
of the 𝛼 effect in the main part of the convection zone and the positive latitudinal
shear. Noteworthy that at high latitude the model shows another dynamo wave family
which propagates poleward along the convection zone boundary. This family follows
the Parker–Yoshimura rule as well. Further we will see that the latitudinal shear plays
the dominant role in this dynamo model and perhaps in the solar dynamo as well (see
also Cameron and Schüssler, 2015). The latitudinal drift of the toroidal magnetic
field in this model results from the turbulent pumping and meridional circulation; see
Fig9(d). The global convective dynamo simulations of Warnecke et al, 2018, 2021
show the crucial role of the turbulent pumping in the solar type dynamo model, as
well. The extended mode of the dynamo cycle is another feature of the given model.
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Fig. 10 a) The surface radial magnetic field evolution (color image) and the toroidal magnetic field
at 𝑟 = 0.9𝑅 (contours in range of ±1kG); b) snapshots of the magnetic field distributions inside
the convection zone for half dynamo cycle, color shows the toroidal magnetic field and contours
show streamlines of the poloidal field; c) snapshots of the dynamo induced variations of zonal
acceleration (color image) and streamlines of the meridional circulation variations (contours); d)
variations of zonal velocity acceleration at the surface.

The toroidal magnetic field dynamo wave starts at the bottom of the convection zone
around 50◦ latitude (see the mark points in Figure 10). It disappears near the solar
equator after full dynamo cycle. On the surface the extended mode of the solar cycle
is seen in the radial magnetic field evolution, in the torsional oscillations of zonal
flow and in variations of the meridional circulation as well (Getling et al, 2021). The
origin of the extended mode of the dynamo cycle is due the distributed character
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of the large-scale dynamo and interaction of the global dynamo modes, where the
low order dynamo modes, e.g., dipole and octupole modes, are mainly generated in
the deep part of the convection zone and the high order modes are predominantly
generated in the near surface level. The phase difference between the models results
into the dynamo mode of the extended length (Stenflo, 1992; Obridko et al, 2021).

5.3 Torsional oscillations

Solar zonal variations of the angular velocity (“torsional oscillations”) were discov-
ered by Howard and Labonte (1980). Since that time it was found that torsional
oscillations represent a complicated wave-like pattern which consists of alternating
zones of accelerated and decelerated plasma flows (Snodgrass and Howard, 1985;
Altrock et al, 2008; Howe et al, 2011). Ulrich (2001) found two oscillatory modes
of these variations with the periods of 11 and 22 years. Torsional oscillations were
linked to ephemeral active regions that emerge at high latitudes during the declining
phase of solar cycles, but represent magnetic field of the subsequent cycle (Wilson
et al, 1988). Interesting that in original paper Howard and Labonte (1980) conjec-
tured that the solar torsional oscillation can shear magnetic fields and induce the
dynamo cycle. This idea was further elaborated in a number of papers. However
the idea looks unreasonable because of conflicts with the Cowling theorem. Also,
the magnitude of the torsional oscillations of 3–6 m s−1 is too small in compare to
magnitude of the magnetic field generated by dynamo. The first papers by Schuessler
(1981) and Yoshimura (1981) suggested that the 11-h year solar torsional oscillation
can be explained by the mechanical effect of the Lorentz force. The double frequency
of the zonal variation results from the 𝐵2 modulation of the large-scale flow due to
the dynamo activity. On the base of the flux-tube dynamo model Schuessler (1981)
using the simple estimation of the large-scale Lorentz force found both 11 and 22
year mode of the torsional oscillations. This results was elaborated further by Klee-
orin and Ruzmaikin (1991). The further development of the mean-field theory of the
solar differential rotation showed that in addition to the large-scale Lorentz force,
the dynamo induced 𝐵2 modulation of the turbulent angular momentum fluxes is
also an essential source of the torsional oscillations (Ruediger and Kichatinov, 1990;
Kitchatinov et al, 1994; Kleeorin et al, 1996; Kueker et al, 1996; Rüdiger et al,
2012). Global convective dynamo simulations (e.g., Beaudoin et al, 2013; Käpylä
et al, 2016a; Guerrero et al, 2016) confirmed the conclusion. The strength of the solar
torsional oscillations is more than two orders of magnitude less than the differential
rotation. It looks like the theory of the torsional oscillations can be constructed using
the perturbative approximations. The models of this type (see, e.g., Tobias 1996;
Covas et al 2000; Bushby and Tobias 2007; Pipin 2015; Hazra and Choudhuri 2017)
were inspired by results of Malkus and Proctor (1975). Yet, the constructed models
are incomplete because they ignore the Taylor-Proudman balance, which is the key
ingredient of the solar differential rotation theory (see Kitchatinov 2013, also contri-
bution of Hazra et al, this volume). The complete mean-field dynamo models which
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take into accounts the Taylor-Proudman balance (hereafter TPB) were constructed
by Brandenburg et al (1992), Rempel (2007) and Pipin and Kosovichev (2019) (here-
after PK19). Figure 10 shows variations of the zonal acceleration for our mean-field
model in following PK19 line of work. Similar to results of helioseismology (Howe
et al, 2011; Kosovichev and Pipin, 2019) and results of Rempel (2007), snapshots of
the model show that in the main part of the convection zone the acceleration patterns
are elongated along the rotation axis. This is caused by the Taylor-Proudman balance.
Near the convection zone boundaries these patterns deviate in the radial direction,
which is in agreement with the above cited helioseismology results, as well. The
given observation on the role of TPB show importance of the meridional circulation
and the dynamo induced heat transport perturbation (Spruit, 2003; Rempel, 2007)
in the theory of the torsional oscillations. This fact does not deny importance of
the large-scale Lorentz force and the magnetic modulation of the turbulent angular
momentum transport. Results of Figures 10b and c show that the positive sign of the
zonal acceleration propagates from the high latitude bottom of the convection zone
toward equator sticking to the equatorial edge of the dynamo wave. The torsional
oscillation wave is accompanied by the corresponded variations of the meridional
circulation. These variations are induced by the magnetic perturbations of the heat
transport (see details in PK19). We emphasize that the given dynamo models also
show overlapping magnetic cycles; see Figure 10(b), similarly to what was origi-
nally proposed by Schuessler, 1981]. In this case 𝐵2 effect of the dynamo on the
heat transport and the TPB results in about 4 to 5 meridional circulation cells along
latitude. This track transports zonal variations of angular velocity, which are caused
by the mechanical action of the large scale Lorentz force and magnetic quenching
of the turbulent stresses, from polar regions to the equator. PK19 found that the
induced zonal acceleration is ∼ (2–4) × 10−8 m s−2, which is in agreement with
the observational results of Kosovichev and Pipin (2019). However, the individual
forces in the angular momentum balance such that the large-scale Lorentz force,
the variations of the angular momentum transport due to meridional circulation, the
inertial forces, and others are by more than an order of magnitude stronger than their
combined action and can reach a magnitude of ∼ 10−6 m s−2. Therefore the resulting
pattern of the torsional oscillations forms in nonlinear balance, which include the
forces driving the angular momentum transport, the TPB and heat perturbations due
to magnetic activity in the convection zone (see details in PK19).

5.4 Dynamo flux budget

Following Cameron and Schüssler (2015) (hereafter, CS15, also see the chapter by
Cameron & Schüssler) we now estimate the budget of the toroidal magnetic flux in
the dynamo region. Using the Stokes theorem and the induction equation Eq. (32),
we define the derivative of the toroidal magnetic field flux in the northern hemisphere
of the Sun as
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𝜕ΦN
tor

𝜕𝑡
=

∮
𝛿Σ

(
U × B + E

)
· dl, (50)

where ΦN
tor =

∫
Σ
𝐵𝜙dS, Σ is the meridional cut of the northern hemisphere of the

solar convection zone, 𝛿Σ stands for the contour confining the cut and the differential
dl is the line element of 𝛿Σ. The same can be written for the southern hemisphere flux
ΦS

tor. Similarly to CS15, we use the boundary conditions, and we estimate the RHS
of the Eq. (50) in the coordinate system which is co-rotating with angular velocity
of the solar equator, 𝑈0𝜙 = 𝑅 sin \Ω0, and Ω0 the surface angular velocity at the
equator,

𝜕ΦN
tor

𝜕𝑡
=

∫ 𝜋/2

0

I1︷                ︸︸                ︷(
𝑈𝜙 −𝑈0𝜙

)
𝐵𝑟 rt d\ +

∫ rt

ri

I2︷                   ︸︸                   ︷(
𝑈

( 𝜋
2 )

𝜙 −𝑈0𝜙

)
𝐵
( 𝜋

2 )
\ dr (51)

+
∫ rt

ri

I3︷            ︸︸            ︷(
E (0)
𝑟 − E ( 𝜋

2 )
𝑟

)
dr +

∫ 𝜋/2

0

I4︷              ︸︸              ︷(
E (t)
\

rt − E (i)
\

ri

)
d\

here, 𝑟𝑡 = 0.99 𝑅, 𝑟𝑖 = 0.67 𝑅, are the radial boundaries of the dynamo region. In
compare to CS15 we have additional contributions in the budget equation. Figure 11
shows profiles of the kernels 𝐼1−4 for the period of the magnetic cycle minimum. The
estimations are based on results and parameters of the mean-field model presented
above. Noteworthy, the south hemisphere should show the profiles of the opposite
sign (see CS15). The results for 𝐼1,4 qualitatively similar to CS15. This is because
the mean-field model show the qualitative agreement with solar observations for the
time latitude evolution of the surface radial magnetic field. The diffusive decay of the
toroidal magnetic flux is captured as well because of the phase shift between evolution
of the poloidal and toroidal magnetic field in dynamo model and presumably in the
solar dynamo as well. The model show the sharp poleward increase of 𝐼1. This effect
produces the winding of the toroidal magnetic field from poloidal component by the
latitudinal shear. The effect of the radial shear, 𝐼2, has maximum near the bottom of
the convection zone, where its magnitude is less than the 𝐼1.

Figure 12(a) shows the time evolution of the RHS contributions of Eq. (51). In
our model the We see that 𝐼2 is about factor 2 less than 𝐼1. Winding of the toroidal
field by the latitudinal shear seems to be the main generation effect in our model
and, perhaps, in the solar dynamo, as well. The radial shear is less efficient because
it is small in the main part of the convection zone. Also, it has the opposite sign near
the convective zone boundaries. This justifies applications of simple 1-D Babcock-
Leighton dynamos to the solar observations as argued by CS15. Together with the
fact of the poleward increase of 𝐼1 it explain the relative success of correlation of the
polar magnetic field strength and the magnitude of the subsequent magnetic cycle
for the solar cycle prediction (Choudhuri et al, 2007).

Figure 12(b) shows the budget of the toroidal flux generation rate and loss rate
for our dynamo model. The parameters of the budget are larger than those deduced
by CS15 from solar observations. The difference is because of additional generation
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Fig. 11 Estimation of contributions of the budget equation; see Eq. (51), for the time of cycle
minimum.
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Fig. 12 (a) Time evolution of the RHS contributions of Eq. (51); (b) the dynamo models budget,
black line show the standard mean-field model, green line - the budget which includes only the
surface contributions (𝐼1,3) , blue line - the run where the radial subsurface shear (region r=0.9-
0.99R) is neglected and the red line shows the model with accounts of surface spot-like activity
effects. Starting point is marked by black circle.

and loss terms. The budget which includes only the surface activity contributions
(green line in Fig.12b) is less than the full case. Also, the magnitude of the generation
rate by the latitudinal shear can be larger than in the solar observations because of
difference in the latitudinal profiles of the surface radial magnetic field. We guess
that in the dynamo model the radial magnetic field increase poleward steeper than
in observations. This issue have to be studied further. Figure 12b shows the budget
for another two dynamo models. In one case, we neglect the generation effect of the
radial subsurface shear in region r=0.9-0.99R. In compare to the standard case, this
model shows the reduction of the generation rate, the amplitude of the generated
toroidal flux, and increase of the loss rate. Therefore we conclude the importance of
the subsurface shear layer for our dynamo model.
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Fig. 13 Snapshots of magnetic regions in the south hemisphere in ascending phase of the magnetic
cycle. The left column shows the nonaxisymmetric magnetic field lines, time is shown in days. The
right column shows the radial magnetic field on the top boundary. (reproduced by permission from
Pipin et al, 2022).

5.5 Impact of the surface activity on the deep dynamo

The above analysis shows the importance of surface activity for the dynamo model
and perhaps for the solar dynamo as well. Sunspot activity in the form of magnetic
bipolar regions is one of the most important aspects of magnetic surface activity. A
consistent approach to include it in dynamo models is at present absent. Also, the
origin of sunspots and their bipolar magnetic field is not well known; see Sect. 4.5.
The Babcock-Leighton type and flux-transport dynamo models use a phenomeno-
logical approach. It is also applicable to mean-field models. Pipin (2022) studied the
effect of surface activity on convection zone dynamos. Here, we briefly discuss some
results of the paper. The emergence of bipolar magnetic regions (BMRs) is modeled
using the mean electromotive force which is represented by the 𝛼 and magnetic
buoyancy effects acting on the unstable part of the axisymmetric magnetic field as
follows:

E (BMR)
𝑖

= 𝛼𝛽𝛿𝑖𝜙 〈𝐵〉𝜙 +𝑉𝛽 (𝒓 × 〈B〉)𝑖 , (52)
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where the first term takes into account the BMR’s tilt and the second term models
the surface magnetic region in the bipolar form. To produce the bipolar like regions
we have to restrict spatially 𝑉𝛽 in Eq. (52) to the small scales that are typical for the
solar BMR; see details in the above cited paper. Position and emergence time are
chosen to be random and modulated by the large-scale magnetic activity. The BMR’s
𝛼-effect parameters are random as well; see details in (Pipin, 2022; Pipin et al, 2022).
The given approach could be refined further using the 3D hydrodynamics, effects
of the Coriolis force and the theory of the Joy’s law developed recently by Kleeorin
et al (2020). Figure 13 illustrates the formation of BMR simulated in the dynamo
model. It was found that the BMR effects on the dynamo are restricted to the shallow
layer below the surface. At the surface, the effect of the BMR on the magnetic field
generation is dominant. Compare to the standard axisymmetric mean-field model
discussed in the subsections above, the nonaxisymmetric dynamo, which includes
the emergence of tilted BMR, can result in additional dynamo generation of the large-
scale poloidal magnetic field and to an increase of the polar magnetic field. The red
line in Figure 12(b) shows the budget for this nonaxisymmetric dynamo model. We
see an increase of the toroidal flux generation rate in the nonaxisymmetric model
because of the surface BMR activity. Similar to Cameron and Schüssler (2015), we
can conclude that sunspot surface activity seems to play an important part in the
solar large-scale dynamo.

5.6 Effect of corona on the dynamo

Usually, dynamo models are limited to the star embedded in a vacuum, which is
described by boundary conditions on the stellar surface. However, the boundary
conditions have a determining influence on the global solutions, such as the sym-
metry about the equator. With the assumption of an external vacuum, all induction
effects in the corona are neglected. Since the solar surface rotates differentially, the
highly conductive plasma in the corona also causes induction effects through shear.
Observations of coronal rotation are very scarce. There is evidence from extended
coronal holes of rigid rotation in latitude (Timothy et al, 1975; Bagashvili et al,
2017). Kinematic dynamo models involving the corona with various assumptions
on its rotation and conductivity give a wide range of solutions (Elstner et al, 2020).
A notable influence of the corona on the dynamo in the convection zone was also
observed in DNS by Warnecke et al (2016). A too weak density contrast and too
strong viscous coupling of the corona to the star in their model probably underesti-
mates the effect of the Lorentz force in the corona. Considering a dynamical situation
with dominant Lorentz force in the corona, the solution in the Sun corresponds to
that with vacuum boundary condition independent of rotation and conductivity in
the corona. The magnetic field in the corona varies in time to a nearly force-free
solution. Further investigations of the star-corona coupling are needed to clarify the
exchange of magnetic energy and helicity.
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Table 1 Comparison of cycle periods 𝑃cyc (in years) from Noyes et al (1984) (NWV84), Baliunas
et al (1995) (Bal+95), and Bonanno and Corsaro (2022) (BC22). The last two columns compare the
seismic age given by BC22 and the gyrochronological age as listed by Brandenburg et al (2017b)
(BMM17). The latter differ significantly, but the determined cycle periods were remarkably stable
over the decades.

— 𝑃cyc [yr] — age [Gyr]
HD NWV84 Bal+95 BC22 BC22 BMM17

3651 10 13.8 14.70 — 7.2
4628 8.5 8.37 8.47 3.33 5.3

16160 11.5 13.2 12.68 — 6.9
160346 7 7.00 7.19 — 4.4
201091 7 7.3 7.11 6.10 3.3
201092 11 11.7 — — 3.2

6 Stellar cycle periods

Noyes et al (1984) developed an early understanding of the observed stellar cycle
periods, 𝑃cyc. In those early years, there where just six stars with measured rotation
and cycle periods. Remarkably, those values have not changed much with the more
accurate data of Baliunas et al (1995); see Table 1 for a list of the cycle periods of
Noyes et al (1984), compared with those of Baliunas et al (1995) and the more recent
data set of Bonanno and Corsaro (2022). The data of Noyes et al (1984) suggested

𝜔cyc ∝ Ω1.25. (53)

for the cycle frequency 𝜔cyc = 2𝜋/𝑃cyc versus angular rotation rate Ω. This depen-
dence is reproduced by considering free dynamo waves by assuming axisymmetric
mean fields 𝑩 = 𝑏𝝓 +∇× 𝑎𝝓 with (𝑎, 𝑏) ∝ 𝑒i(𝑘𝑦−𝜔𝑡) and writing −i𝜔 = −i𝜔cyc +_,
where both 𝜔cyc and _ are assumed to be real. The main field dynamo equations
result in traveling wave solutions with a dispersion relation of the form

_ =
√︁
𝛼Ω′𝑘𝐿/2 − [T𝑘

2, (54)

𝜔cyc =
√︁
𝛼Ω′𝑘𝐿/2. (55)

At least up to moderate rotation rates, it is reasonable to assume that 𝛼 and Ω′

are proportional to Ω. The crucial assumption in arriving at an approximation that
matches Eq. (53) is to assume that the relevant wavenumber 𝑘𝑦 is selected not by the
condition of marginal excitation, but by the assumption that _ = _(𝑘) is maximized.
Thus, 𝑘 has to obey the d_/d𝑘 = 0, which yields 𝜔cyc ∝ (𝛼Ω′)2/3 ∝ Ω4/3. By
contrast, if the dynamo is quenched to the being marginally excited, then 𝜔cyc ∝ (≈
[T/𝐿2, which would be either independent of Ω, or perhaps even decreasing with Ω,
if [T decreases with increasing Ω due to quenching.

Of course, nonlinear dynamos must always be quenched to reach a steady state.
This led Brandenburg et al (1998) to suggest that Eq. (53) could be obeyed if both 𝛼
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Fig. 14 Dependence of cycle period on stellar rotation rate. Red and black crosses show the results
of Brandenburg et al (2017b), green crosses those of Lehtinen et al (2020), orange squares the
models of Warnecke (2018), and stars are from the models of Pipin (2021); act/inact marks the
active and inactive branches of activity; ‘kin’ and ‘nkin’ stand for kinematic and nonkinematic
models (adapted by permission from Pipin, 2021).

and [T are antiquenched in such a way that [T is quenched faster than 𝛼, so that 𝜔cyc
would increase with increasing magnetic field strength, and hence Ω, and would still
saturate. Whether this the only viable solution to this puzzle remained unclear.

Recently, a number of the numerical dynamo models were applied to investigate
the relation of the cycle period on the stellar rotation rate in the solar analogs (Pipin,
2015; Strugarek et al, 2017; Warnecke, 2018; Hazra et al, 2019; Pipin, 2021; Noraz
et al, 2022). Figure 14 shows some these results including the results of observations
of Brandenburg et al (2017b) and survey of Lehtinen et al (2020). Interesting that
the saturation branch of the stellar activity on the young solar analogs with period of
rotation less than 10 days is well reproduced in the very different solar-like dynamo
models including the global convective dynamo simulation (Strugarek et al, 2017;
Warnecke, 2018), flux transport model of Hazra et al (2019) and mean-field model
of Pipin (2021). In Fig.14 this branch is marked by the green line. The mean cycle
period in this branch is almost independent of stellar rotation rate. The non-kinematic
nonlinear model of Pipin (2021) show multiple periods along this line. Pipin (2021)
found that saturation of the dynamo activity is accompanied by depression of the
latitudinal shear, concentration of the magnetic activity to the surface and changes
the meridional circulations from one-cell to multiple-cell per hemisphere structure.
Following conclusions of the above cited paper, in saturated stated the dynamo waves
do not follow the Parker–Yoshimura law. Their cycle period is determined by the
turbulent diffusion and meridional circulation. That is why predictions of the flux-
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Fig. 15 𝑃rot/𝑃cyc versus log〈𝑅′
HK 〉 for all stars of Bonanno and Corsaro (2022) (small black

symbols). Lowercase (uppercase) letters denote data points of Bonanno and Corsaro (2022) that
were also included in the sample of Brandenburg et al (2017b). The dotted lines denote the fits
determined by Brandenburg et al (2017b) while the upper (lower) solid lines denote fits to the stars
of Bonanno and Corsaro (2022) with lowercase (uppercase) letters.

transport and nonkinematic mean-field dynamo models coincide. The independence
of the cycle period from rotation rate can be typical for the dynamo solutions which
show concentration of the magnetic activity toward the dynamo region boundaries
(see Pipin, 2015; Pipin and Kosovichev, 2016).

The inactive branch of the nonkinematic mean-filed dynamo models shows fairly
strong positive inclination (see Figure 14), which is absent in the kinematic models.
We see that the dynamo model can reproduce an power law ∼ Co0.5 avoiding
the antiquenching concept of Brandenburg et al (1998). In fact, the nonkinematic
dynamo models show the so-called doubling frequency phenomena for the models
in between 10 and 15 days rotation period (see Figs. 3 and 8 of Pipin, 2021). The
frequency doubling or the second harmonic generation is known from nonlinear
optics. It is typical for the waves propagation in the nonlinear media. In the dynamo
waves, the second harmonics are generated because of the 𝐵2 effects such as the
magnetic effects on the large-scale flow, magnetic helicity conservation and magnetic
buoyancy effects. The second harmonics can be found in the solar activity, as well
(Sokoloff et al, 2020). For the solar case they are subdominant. However they can
become dominant for the fast rotating stars. This makes the interpretation of the
magnetic activity cycles difficult (Stepanov et al, 2020). Summarizing, we find the
Parker–Yoshimura dynamo regime for the solar analogs rotating with period above
15 days; in interval of the stellar rotation periods between 10 to 15 days the doubling
frequency occurs; for the lower rotational periods the dynamo transits to a saturation
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Table 2 Comparison of stellar cycle properties from the samples of Bonanno and Corsaro (2022)
and Brandenburg et al (2017b) (indicated as “old”). The blue italics and red roman letters refer to
the stars discussed in Brandenburg et al (2017b) and are also indicated in Figure 15.

HD Sym log〈𝑅′
HK 〉 log〈𝑅′𝑜𝑙𝑑

HK 〉 𝑃rot [d] 𝑃old
rot [d] 𝑃cyc [yr] 𝑃I

cyc [yr] 𝑃A
cyc [yr]

100180 h −4.83 −4.92 14.06 14.00 3.60 3.60 12.90
103095 i −4.90 −4.90 32.51 31.00 7.07 7.30 —
10476 c −4.97 −4.91 35.40 35.20 10.45 9.60 —

146233 l −4.95 −4.93 22.66 22.70 11.59 7.10 —
160346 m −4.86 −4.79 34.20 36.40 7.19 7.00 —
16160 d −4.94 −4.96 48.29 48.00 12.68 13.20 —

165341 n −4.61 −4.55 19.51 19.00 5.09 5.10 15.50
166620 o −5.00 −4.96 42.25 42.40 16.81 15.80 —
219834 s −4.93 −4.94 38.89 43.00 9.48 10.00 —
26965 f −4.96 −4.87 40.83 43.00 10.24 10.10 —
3651 a −5.06 −4.99 40.50 44.00 14.70 13.80 —
4628 b −4.95 −4.85 37.82 38.50 8.47 8.60 —

81809 g −4.89 −4.92 40.93 40.20 8.05 8.20 —
219834 r −5.10 −5.07 43.40 42.00 16.29 21.00 —
201091 p −4.56 −4.76 35.62 35.40 7.11 7.30 —

Sun a −4.94 −4.90 25.55 25.40 10.70 11.00 80.00
149661 K −4.61 −4.58 20.92 21.10 12.38 4.00 17.40
152391 M −4.46 −4.45 11.01 11.40 11.94 — 10.90
156026 L −4.56 −4.66 18.85 21.00 19.31 — 21.00
190406 N −4.76 −4.80 14.01 13.90 18.61 2.60 16.90
76151 F −4.68 −4.66 14.70 15.00 16.34 2.50 —
78366 G −4.57 −4.61 9.60 9.70 14.26 5.90 12.20

114710 J −4.74 −4.75 11.99 12.30 14.12 9.60 16.60
22049 E −4.46 −4.46 11.09 11.10 11.00 2.90 12.70

stage, it can be characterized by the high magnetic activity and multiply dynamo
periods which are independent of the stellar rotation rate.

In recent work of Bonanno and Corsaro (2022), new cycle data were collected for
altogether 67 stars. Their new sample includes stars with less accurate data points, so
the existence of different branches was no longer a pronounced feature. In addition,
many of the new data points are different from the earlier ones of Brandenburg et al
(2017b); see Table 2. As in their paper, we denote G and F dwarfs by the same blue
italic symbols and K dwarfs by the same red roman symbols.

To see how strong this revision of the data is, we plot in Figure 15 the ratios
𝑃rot/𝑃cyc versus log〈𝑅′

HK〉 for all stars of Bonanno and Corsaro (2022) and highlight
with lowercase and uppercase letters the stars that were also included in the sample
of Brandenburg et al (2017b). We see that the new data are remarkably consistent
with the old ones. Out of the eight stars on the branch of active stars, five where listed
by Brandenburg et al (2017b) as having two periods. Of the 16 inactive stars, three
were listed with two periods, but the case of the Sun was classified by Brandenburg
et al (2017b) as somewhat different, because the 80 years Gleissberg cycle does not
fit well on the active branch and, unlike all the other stars with two cycle periods,
which are all younger than 3.3 Gyr, the Sun is relatively old.
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7 Mean-field models based on the EMF obtained from DNS

We now review recent studies of mean-field dynamo models constructed based on
the electromotive force (EMF) obtained from direct numerical simulation (DNS)
of rotating stratified convection, especially focusing on “semi-global” models. The
properties of solar and stellar convection, and the various methods for extracting the
information of the EMF from DNS are also summarized.

7.1 Properties of Solar and Stellar Convection

The convection zones (CZs) of the Sun and stars are in a turbulent state with huge val-
ues of fluid Reynolds number (Re & 1012), magnetic Reynolds number (ReM & 108),
Rayleigh number (Ra & 1020), and an extremely low Prandtl number (Pr ∼ 10−4–
10−7); see, e.g., Ossendrĳver (2003). A quantitative physical description of solar and
stellar dynamos, which should be the result of the nonlinear interaction of turbulent
flows and magnetic fields, is a great challenge for us and constitutes a significant mile-
stone on the long way to a full understanding of turbulence. Even with state-of-the-art
supercomputers, it is impossible to numerically simulate solar and stellar convection
and its interaction with the magnetic field and to observe/analyze numerical data in
detail with realistic parameters. Therefore, to say with complete confidence that one
has fully understood the solar and stellar dynamo problem, it should be necessary to
find a universal law of magneto-hydrodynamic (MHD) turbulence, build a reliable
sub-grid scale (SGS) turbulence model, and then reproduce the magnetic activities
of the Sun and stars quantitatively in an integrated framework by numerical mod-
els with incorporating the SGS model. This is because fluid quantities that may be
verified in future observations should include the meridional distributions of fluid
velocity, vorticity, kinetic helicity, and thus the turbulence model constructed on
the basis of these profiles (e.g., Hanasoge et al, 2016). Only when the correctness
of the turbulence model is observationally validated should our understanding of
the solar and stellar dynamos as a consequence of the turbulent dynamo process be
completed. In the near future, a very exciting time may come when we will be able to
test and verify various turbulence models under extreme conditions inside the solar
and stellar interiors.

What physical characteristics should be taken into account when constructing a
turbulence model of thermal convection in the Sun and stars? Let us summarize
some essential features:

1. Extremely low dissipation: turbulent state with Re & 1012, ReM & 108, and a
large Pèclet number, Pe ∼ 106 − 109 (where Pe = Re · Pr).

2. Huge separation of dissipation scales: Pr ∼ 10−4–10−7, PrM ∼ 104

3. Compressibility: high Mach number O(1) in the upper convection zone makes
the convective motion compressible.
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4. Anisotropy: spin of stars (i.e., Coriolis force in a rotating system) makes fluid
motions anisotropic.

5. Inhomogeneity: density contrast of 106 between top and bottom CZs results in
multi-scale properties of fluid motion.

6. Non-locality: Radiative energy loss at the CZ surface (open system), allowing
the growth of cooling-driven downflow.

In view of these features, it can be seen that the characteristics of thermal convec-
tion operating inside the Sun and stars are quite different from those of isotropic
turbulence. Those can be considered to some extent in DNS even with the current
computing performance, as listed under 3–6, while the others, (items 1 and 2) are
unreachable with current grid-based simulations. It should be emphasized, however,
that higher resolution simulations using state-of-the-art supercomputers is a clas-
sical way forward in turbulence research, and the knowledge obtained from such
studies in unexplored low-dissipation regimes will greatly expand the horizon of our
understanding of turbulence (e.g., Kaneda et al, 2003; Hotta and Kusano, 2021).
Moreover, if sufficient scale separation between the turbulent and mean fields is
ensured and the inertial range of the turbulent cascade is captured appropriately,
there is the possibility that the evolution of mean-field components, such as large-
scale flow and large-scale magnetic field, can be approximately reproduced even
by simulations with enhanced dissipation compared to the actual solar and stellar
values (e.g., Ossendrĳver, 2003). It should be remembered, however, that in spite of
the rapid increase in computing power, some rather basic questions about the solar
dynamo still remain, for example the equatorward migration of the sunspot belts and
the formation of sunspots themselves.

7.2 Semi-global simulation of rotating stratified convection

On our way toward a reliable SGS turbulence model for solar and stellar interiors,
numerical models of convection and its dynamo should be studied, while keeping the
characteristic features of solar and stellar convection, as listed under items 3–6 above,
in mind. It should be noted that the underlying necessity for numerical modeling is
an important component of earlier studies that applied mixing-length type concepts
to the dynamo theory, which never successfully explained the magnetic activities of
the Sun and stars (e.g., Brandenburg and Tuominen, 1988).

In recent years, significant progress has been made in global convective dynamo
simulations (e.g., Browning et al, 2006; Ghizaru et al, 2010; Käpylä et al, 2012;
Masada et al, 2013; Fan and Fang, 2014; Augustson et al, 2015; Hotta et al, 2016;
Warnecke, 2018), there is also a growing effort to extract the information of turbulent
transport processes from so-called “semi-global” (or local model) MHD convection
simulations with the aim of quantifying the dynamo effect of rotational stratified
convection (e.g., Brandenburg et al, 1990, 1996; Nordlund et al, 1992; Brummell
et al, 1998, 2002; Ossendrĳver et al, 2001; Käpylä et al, 2006a, 2009b; Masada
and Sano, 2014b,a, 2016; Bushby et al, 2018; Masada and Sano, 2022). A typical
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Fig. 16 Numerical setup typical for semi-global simulation of rotating stratified convection. Since
the CZs of the Sun and stars are strongly stratified, there is a large separation of time scales from
minutes (upper CZs) to months (bottom CZs).

numerical setup of the semi-global model is shown in Figure 16 schematically.
In this setting, the gas is gravitationally stratified in the vertical direction, while
periodicity is assumed in the horizontal directions. The governing equations (mostly
compressible MHD equations) are solved in a rotating Cartesian frame, and the
rotation axis is usually set to be parallel or anti-parallel to the gravity vector. Several
studies have simulated the model with the tilt of the rotation axis with respect to the
gravity vector, and the latitudinal dependence of the convection has been investigated
(e.g., Ossendrĳver et al, 2001; Käpylä et al, 2004, 2006a).

7.3 Extraction of information of dynamo effects

In the semi-global studies, four-types of approaches have been used typically to
extract the information of dynamo effects veiled in the convective motion. The
starting point of all the four methods is common, the decomposition of the flow
field (𝑼) and magnetic field (𝑩) into a spatially large-scale, slowly-varying mean-
component, and a small-scale, rapidly varying fluctuating component, as introduced
in § 1, i.e., 𝑼 = 𝑼 + 𝒖 and 𝑩 = 𝑩 + 𝒃, where the lower-case represent the fluctuating
component and the overbars denote the mean component. In the case of a semi-
global model, a temporal and horizontal average is often used for deriving the mean
component. Then, the equation of mean-field electrodynamics can be derived

𝜕𝑩

𝜕𝑡
= ∇ × (𝑼 × 𝑩 + E − [∇ × 𝑩) , (56)

where E = 𝒖′ × 𝒃′ is the mean electromotive force (EMF) due to the fluctuation of
the flow and the magnetic field. The mean EMF can be described as a power series
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about the large-scale magnetic component and its derivatives as

E = 𝒖 × 𝒃 = 𝜶 · 𝑩 + 𝜸 × 𝑩 − 𝜷 · (∇ × 𝑩) + · · · , (57)

where 𝜶 represents (tonsorial form of) the 𝛼-effect, 𝜸 is the turbulent pumping, and
𝜷 denotes the turbulent diffusion.

To obtain the information of the dynamo coefficients, such as 𝜶, 𝜸, and 𝜷, from
the MHD convection simulation, there are the following four methods:

(i) Method based on first-order smoothing approximation (FOSA) expressions
(ii) Imposed-field method
(iii) Test-field method
(iv) Self-sustained field based method

Method (i) involves the the estimation of dynamo coefficients based on FOSA
(also known as the second-order correlation approximation). There, the distributions
of, for example, the fluctuating components of the convection velocity (𝒖), vorticity
(𝝎 = ∇ × 𝒖), and the resulting kinetic helicity (H = 𝝎 · 𝒖), are directly extracted
from the simulation results and used to reconstruct the turbulent 𝛼 and 𝛽 via their
analytic forms, derived under FOSA, such as Eq. (14) and 𝛽 = (𝜏/3)𝒖2, where 𝜏 is
the correlation time of the turbulence and is often replaced by the convective turnover
time. Note that anisotropy effects are often neglected in the expressions above, but
see Brandenburg and Subramanian (2007), who included them.

Method (ii) is mainly used in the analysis of the numerical results without self-
sustained magnetic field. In this method, a uniform external magnetic field is imposed
as the mean component to the computational domain, artificially. Then, the turbulent
𝛼-effect or the turbulent magnetic diffusivity is inferred from E = 𝒖 × 𝒃, which is
directly calculated from simulation data, via the relationship, if E = 𝛼𝑩− 𝛽`0𝑱 with
𝑱 = ∇ × 𝑩,

𝛼 = E · 𝑩/𝑩2
, (58)

when assuming 𝑱 · 𝑩 = 0. Furthermore, one might be tempted to compute 𝛽 =

E · 𝑱/(`0𝑱
2), but these would assume that 𝑱 · 𝑩 is vanishing, which is generally not

the case for 𝛼-effect dynamos; see Hubbard et al (2009) for details.
Method (iii) utilizes a so-called test-field, as introduced by Schrinner et al (2005,

2007) for the spherical case and Brandenburg et al (2008) for the Cartesian case,
allowing for scale dependence. In this method, the evolution equation of 𝒃′T, the
fluctuating component of the test field 𝑩T, which are passive to the velocity field
taken from the simulation, is solved additionally to the basic (MHD) equations. From
the linear evolution of the test-field, the mean EMF is evaluated and then the full set
of turbulent transport coefficients can be obtained. For example, in the case without
the large-scale flow, the test-field equation is, for 𝒃T,

𝜕𝒃T
𝜕𝑡

= ∇ × (𝒖 × 𝑩T + 𝒖 × 𝒃T − 𝒖 × 𝒃T − [∇ × 𝒃T) , (59)
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with a chosen test field 𝑩T while taking 𝒖 from the MHD simulation. Note that
the test-field method is only valid in the absence of turbulent magnetic components
primarily, that is, if the magnetic fluctuation 𝒃 vanish for 𝑩 = 0.

Method (iv) can be used only in the analysis of the numerical results with self-
sustained magnetic fields. Since the fluctuating and mean components are all known
quantities in such simulations, the mean emf, E = 𝒖 × 𝒃, and the mean magnetic
component, 𝑩, can be directly calculated from the simulation data. Then, the mean
profiles of dynamo coefficients are inferred based on a fitting procedure via the
relationship,

E𝑖 = 𝛼𝑖 𝑗𝐵 𝑗 + 𝜖𝑖 𝑗𝑘𝛾 𝑗𝐵𝑘 + higher derivative terms . (60)

Given E𝑖 and 𝐵𝑖 which are calculated from simulation data, and then find 𝛼𝑖 𝑗

and 𝛾𝑖 such that the residual of Eq. (60) is minimized. In the equation above, the
contributions from the derivatives of the mean magnetic component to the mean
emf are neglected (see, e.g., Racine et al, 2011; Simard et al, 2013, 2016; Shimada
et al, 2022, for the fitting based analysis of the dynamo coefficient with including the
contribution from the first-order derivative of the mean magnetic component). In all
cases, however, the first (and often higher) derivative terms are of the same order as
the first term and can therefore not be neglected. This was already done in the work of
Brandenburg and Sokoloff (2002), who typically found small diffusion coefficients
in the cross-stream direction. This, however, turned out to be a shortcoming of the
method and has not been borne out by more advanced measurements (Karak et al,
2014).

7.4 Transport coefficients from semi-global turbulence simulations

Here, we briefly review the results of previous semi-global simulations, with a
particular focus on the studies that have been dedicated for extracting information
about dynamo coefficients.

Brandenburg et al (1990), hereafter B90, performed turbulent 3-D magneto-
convection simulations under the influence of the rotation for the semi-global model
whose depth is equivalent to about one pressure scale height. They found that, due
to the effect of the rotation, a systematic separation of positive and negative values
of the kinetic helicity was developed in the vertical direction of the CZ, i.e., in the
upper CZ, negative (positive) helicity in the northern (southern) hemisphere, while
positive (negative) helicity in the northern (southern) hemisphere. Using the imposed
field method, they evaluated the magnitude of the turbulent 𝛼-effect with anisotropic
properties as 𝛼𝑉 /(𝜏H) ∼ O(0.1) and 𝛼𝐻 /(𝜏H) ∼ O(0.01), where H = 𝝎 · 𝒖
and E = 𝛼H𝑩H + 𝛼V𝑩V. It is interesting to note that these values are about one to
two orders of magnitude smaller than 𝛼 ∼ Ω𝑑, which is the estimation based on the
mixing-length theory. Additionally, it was also suggested that the magnetic helicity
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showed a similar depth variation, but the sign was opposite to that of the kinetic
helicity.

While 𝛼H had the expected sign (opposite to that of the kinetic helicity), 𝛼V
was found to have the ‘wrong’ sign (same as that of the kinetic helicity). Such a
result was subsequently also obtained by Ferriere (1993). The theoretical possibilities
for such effects should be studied further. For example, Rüdiger and Pipin (2000)
found that large-scale shear can affect both the sign of the 𝛼 effect and kinetic
helicity in magnetically driven compressible turbulence in such a way that they have
the same sign, e.g., for Keplerian accretion disks. These ideas were also applied to
understanding the finding of a negative𝛼 effect in stratified accretion disk simulations
(Brandenburg, 1998).

Ossendrĳver et al (2001) also performed the semi-global simulation with a similar
model as B90. They showed that, even in the regime where the condition justifying
the FOSA (or SOCA) is not satisfied, i.e., in the situation where St = 𝑢rms𝜏/𝑑 & 1 and
𝑅𝑒 > 1, the kinetic helicity was clearly separated into positive and negative values
at the lower and upper CZs when taking temporal average of the convective motion
over sufficiently long time. Using the imposed field method, they also measured the
magnitude of the turbulent 𝛼-effect and obtained similar values to B90 in terms of
𝛼𝐻 and 𝛼𝑉 . The rotational dependence of the 𝛼-effect was also investigated in this
work for the first time. They showed that, in the larger Co regime, the 𝛼𝑉 underwent
a rotational quenching, while the 𝛼𝐻 was saturated, where Co is the Coriolis number
[see Eq. (35)]. The turnover time was defined, in this work, as 𝜏 = 𝑑/𝑢rms. While the
depth-dependence or rotational dependence of the 𝛼, which was obtained from the
simulation, agreed, to some extent, with a theoretical model based on the mixing-
length theory (Rüdiger & Kitchatinov 1993), their amplitudes were one to two orders
of magnitude smaller than those predicted from the theoretical model. Noteworthy,
the critical threshold of the 𝛼 effect parameter in mean field dynamo models (see
subSection 5.1) is about same magnitude less than the mixing-length models of the
solar convection zone predicts; see Sect. 5.

In Käpylä et al (2004, 2006a), additionally to the rotational dependence, the latitu-
dinal dependence of the turbulent 𝛼-effect was studied in the semi-global convection
simulations with varying the inclination of the rotation axis with respect to the grav-
ity vector. With the imposed field method, they found that, for slow and moderate
rotation with Co < 4, the latitudinal dependence of the 𝛼 followed cos \ profile with
a peak at the pole (see also, Egorov et al, 2004), while, in the rapid rotation regime
with Co ≈ 10, it rather peaked much closer to the equator at \ ' 30◦. Addition-
ally, the vertical profile of the 𝛼 directly evaluated from simulation was found to be
qualitatively consistent with analytic expression derived under the FOSA even when
changing the latitude. A practical application of these results was the development
of a kinematic mean-field solar dynamo model in Käpylä et al (2006b). In it, the
rotation profile deduced from the helioseismic observation and the meridional pro-
files of the 𝛼-effect and turbulent pumping obtained with the semi-global simulation
of Käpylä et al (2006a) are integrated into the framework of the 𝛼–Ω dynamo, and
then the solar dynamo mean-field model was constructed. It is interesting that their
kinematic dynamo model correctly reproduced many of the general features of the
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solar magnetic activity, for example realistic migration patterns and correct phase
relation.

The existence of large-scale dynamo, i.e., self-excitation of the mean magnetic
component, in rigidly-rotating convection was demonstrated for the first time in the
semi-global simulation by Käpylä et al (2009b). By changing the angular velocity,
they showed that the large-scale dynamo could be excited only when the rotation is
rapid enough, i.e., Co & 60, with Eq. (35) as the definition of Co which is same
as that used in Ossendrĳver et al (2001) and Käpylä et al (2006a); see, e.g., Tobias
et al (2008) and Cattaneo and Hughes (2006), and Favier and Bushby (2013), for
unsuccessful large-scale dynamo in rigidly-rotating convection probably due to slow
rotation, and/or short integration time. From the measurements of the turbulent 𝛼-
effect and the turbulent diffusivity by test-field method, they also suggested that
while the magnitude of the 𝛼-effect stayed approximately constant as a function
of rotation, the turbulent diffusivity decreased monotonically with increasing the
angular velocity, resulting in the excitation of the large-scale dynamo in the higher
Co. The reliability of the dynamo coefficients extracted with the test-field method
from the simulation was validated with the one-dimensional mean-field dynamo
model in which the test-field results for 𝛼 and 𝛽 were used as input parameters by
studying the excitation of the large-scale magnetic field at the linear stage. Note that
the oscillatory properties of the large-scale dynamo in rigidly-rotating convection
and its possible relationship with 𝛼2 dynamo mode with inhomogeneous 𝛼 profile
were also found in Käpylä et al (2013); see, e.g., Baryshnikova and Shukurov (1987)
and Mitra et al (2010b) for the oscillatory 𝛼2 dynamo.

7.5 Mean-field dynamo models linked with DNSs

7.5.1 Weakly-stratified Model

Below we review recent mean-field dynamo models linked with semi-global MHD
convection simulations, where the large-scale dynamo is successfully operated; see
Masada and Sano (2014b,a, 2016, 2022) for a series of numerical studies.

While Käpylä et al (2009b, 2013) were the first to demonstrate that rigidly-rotating
convection can excite the large-scale dynamo as reviewed above, their simulation
model was a so-called “three-layer polytrope” consisting of top and bottom stably-
stratified layers and the CZ in between them. Therefore, it was suspected for a while
that the essential factor for the successful large-scale dynamo observed there might
be the presence of the stably-stratified layer assumed in their model rather than the
rapid rotation (e.g., Favier and Bushby, 2013). To pin down the key requirement for
the large-scale dynamo, the impact of the stably-stratified layers on the large-scale
dynamo was studied in Masada and Sano (2014b), hereafter MS14a, in which two-
types of semi-global models with and without stably-stratified layers are compared
with the same control parameters and the same grid spacing. It was found in this
study that a large-scale dynamo was successfully operated even in the model without
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the stably-stratified layer, and confirmed that the key requirement for it should be a
rapid rotation if we evolved the simulation for a sufficiently long time than the ohmic
diffusion time. Note that a relatively weak density stratification (the density contrast
between the top and bottom CZs is about 10) was assumed in the simulation model
employed in this study as well as Käpylä et al (2009b, 2013).

With these results, Masada and Sano (2014a), hereafter MS14b, explored the
mechanism of the large-scale dynamo operated in the rigidly-rotating stratified con-
vection by linking the mean-field (MF) dynamo model with the DNS. In this study,
the FOSA based approach was adopted in the MF modeling. The mean vertical
profiles of the kinetic helicity and root-mean square velocity were directly extracted
from the simulation data and then the vertical profiles of the turbulent 𝛼, turbu-
lent pumping (𝛾) and turbulent diffusivity (𝛽) were reconstructed according to the
analytic expressions of

𝛼(𝑧) = −𝜏𝑐 (𝑢𝑧𝜕𝑧𝑢𝑦 + 𝑢𝑥𝜕𝑦𝑢𝑧) , 𝛾(𝑧) = −𝜏𝑐𝜕𝑧 (𝑢𝑧)2 , 𝛽(𝑧) = 𝜏𝑐 (𝑢𝑧)2 , (61)

in anisotropic forms of dynamo coefficients under the FOSA (e.g., Käpylä et al,
2006a). Although recent numerical studies indicate that the small-scale current he-
licity, i.e., 𝒋 · 𝒃, is important for the 𝛼-effect when the magnetic field is dynamically
important (Pouquet et al, 1976; Brandenburg and Subramanian, 2005b), its contri-
bution was ignored in this study. As the correlation time 𝜏𝑐 , the convective turnover
time defined by 𝜏 = 𝐻𝜌 (𝑧)/𝑢rms was chosen there (𝐻𝜌 is the density scale-height
as a function of the depth). By solving one-dimensional MF 𝛼2 dynamo equation in
which these profiles were used as input parameters, i.e.,

𝜕𝑩ℎ

𝜕𝑡
= ∇ × (E − [∇ × 𝑩ℎ) , (62)

with
E = 𝛼(𝑧)𝑩ℎ + 𝛾(𝑧)𝒆𝑧 × 𝑩ℎ − 𝛽(𝑧)∇ × 𝑩ℎ , (63)

the time-depth diagram for the mean (horizontal) magnetic component (𝑩ℎ) was
obtained. Shown in Fig. 17 is 𝐵𝑥 (𝑧, 𝑡) for the MF model (panels (b)) and its DNS
counterpart (panels (a)). Note that, for ensuring the saturation of the magnetic field
growth, the quenching effect was also taken into account. Since the DNS results
were quantitatively reproduced by the MF 𝛼2 dynamo, MS14b concluded that the
large-scale magnetic field organized in the rigidly-rotating turbulent convection was
a consequence of the oscillatory 𝛼2 dynamo.

Reproducing the DNS results with mean-field models using coefficients from the
original DNS is an important verification of the whole approach. This has been done
on many occasions in the past; see, for example, the work by Gressel (2010) and
Warnecke et al (2021).
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Figure 2. Time-depth diagram of 〈Bx〉h for the reference model in (a) the DNS and (b) the MF model coupled with the DNS. In both panels, the orange (blue) tone
denotes the positive (negative) 〈Bx〉h in units of Bcv. The horizontal dashed lines show the interface between the convection zone and the stable zones.
(A color version of this figure is available in the online journal.)

Figure 3. Time series of 〈Bx〉v and 〈By〉v for the reference model. The cyan [orange] solid line denotes 〈Bx〉v [〈By〉v] normalized by Bcv in the DNS. The red dashed
and blue dash-dotted lines are 〈Bx〉v and 〈By〉v in units of Bcv in the MF model. The time is normalized by the turbulent magnetic diffusion time.
(A color version of this figure is available in the online journal.)

force (e.g., Ossendrijver et al. 2002). The coefficients α, γ ,
and η represent the α-effect, turbulent pumping, and turbulent
magnetic diffusivity, respectively. All the terms related to 〈u〉h
and 〈Bz〉h can be ignored in considering the symmetry of the
system. All the variables, except for η0, depend on the time (t)
and depth (z).

The MF dynamo described by Equation (2) falls into the
α2-type category. The MF theory predicts that the α2 mode can
generate a large-scale magnetic field with an oscillatory nature
(e.g., Baryshnikova & Shukurov 1987; Rädler & Bräuer 1987;
Brandenburg et al. 2009). A key ingredient for the oscillatory
mode is the nonuniformity of the α-effect, which can arise
naturally as an outcome of rotating stratified convection in the
stellar interior. Using the rigidly rotating system studied here,
the α2 dynamo wave was excited, which propagates only in the
depth direction. However, as shown by Käpylä et al. (2013b), in
the global system, it can travel also in the latitudinal direction
due to the strong antisymmetry of the α-effect across the equator.

The dynamo-generated MF produces a Lorentz force that
tends to “quench” the turbulent motions and control the non-
linear evolution and saturation of the system. Since there is
no definitive model to describe the magnetic quenching effect
(e.g., Rogachevskii & Kleeorin 2001; Blackman & Brandenburg
2002) as yet, we adopt the prototypical models, which are the
dynamical α-quenching, algebraic γ - and η-quenching of the
catastrophic-type;

∂α

∂t
= −2ηkk

2
c

[
α〈Bh〉2

h − η (∇ × 〈Bh〉h) · 〈Bh〉h

B2
eq

+
α − αk

ReM

]

,

(4)

γ = γk

1 + ReM〈Bh〉2
h/B

2
eq

, (5)

η = ηk

1 + ReM〈Bh〉2
h/B

2
eq

, (6)

(see Brandenburg & Subramanian 2005, for the quenching),
where ReM = ηk/η0. The dependence of the MF model on the
quenching formula should be discussed in detail in a subsequent
paper; however, at least the conclusions of this Letter remain
independent from the choice of the quenching models. The
characteristic wavenumber kc and the equipartition field strength
Beq are given by kc(z) = 2π/Hd and Beq(z) = 〈〈ρuz

2〉〉h in our
model, where Hd = −dz/d ln〈〈ρ〉〉h is the density scale height.
Here, the subscript “k” refers to the unquenched coefficient,
which is calculated from DNS results of the saturated convective
turbulence.

In the first-order smoothing approximation (FOSA), the
unquenched coefficients αk , γk , and ηk in anisotropic forms
are given by (e.g., Käpylä et al. 2006, 2009b)

αk(z) = − τc[〈〈uz∂xuy〉〉h + 〈〈ux∂yuz〉〉h] ≡ −τcHeff, (7)

γk(z) = − τc∂z〈〈u2
z〉〉h ≡ −τc∂zu

2
rms, (8)

ηk(z) = τc〈〈u2
z〉〉h ≡ τcu

2
rms, (9)

where τc is the correlation time, Heff is the effective helicity, and
urms is the rms velocity. The vertical profiles of Heff and u2

rms in
the reference DNS model are shown in Figure 1(b) by solid and
dashed lines, respectively.

3

Fig. 17 Time-depth diagram 𝐵𝑥 (𝑧, 𝑡) for the MF model (panel (b)) and its DNS counterpart
(panel (a)). For DNS result, the horizontal average of the magnetic field is shown. The orange and
blue tones represent positive and negative 𝐵𝑥 in units of 𝐵cv ≡ (𝜌𝒖2)1/2. Time is normalized
by 𝜏𝑐 . Note that 𝐵𝑦 shows a similar cyclic behavior with 𝐵𝑥 yet with a phase delay of 𝜋/2; see
MS14a,b for details.

7.5.2 A strongly stratified model

In MS14a,b, a weakly-stratified model, in which the density contrast between top
and bottom CZs is about 10, was adopted. However, the actual Sun has a strong
stratification with a density contrast of 106 between top and bottom CZs, resulting in
a large segregation of time scales from minutes to months. Bearing the application
to solar and stellar interiors in mind, Masada and Sano (2016), hereafter MS16,
performed a convective dynamo simulation in a strongly stratified atmosphere with
a density contrast of 700 in a semi-global setup. Due to the strong solar- and stellar-
like density stratification, multi-scale convection with a strong up-down asymmetry,
i.e., slower and broader upflows surrounded by a network of faster and narrower
downflow lanes, was developed in this simulation, as shown in Fig. 18(a). Even
in such a situation, the large-scale dynamo was found to operate. As shown in
Figure 18(b), the mean magnetic field components observed there showed a time-
depth evolution similar to that in the weakly-stratified model (MS14a,b), indicating
that an oscillatory 𝛼2 dynamo is responsible for it. It was intriguing that, additionally
to the mean horizontal component, the large-scale structures of the vertical magnetic
field were spontaneously organized at the CZ surface in the case of the strongly
stratified atmosphere, as shown in Figure 19.

A possible physical origin of such surface magnetic structure formation is the
negative magnetic pressure instability (NEMPI; see § 8 for details). NEMPI is a
mean-field process in the momentum equation, where the Reynolds and Maxwell
stresses attain a component proportional to the square of the mean magnetic field,
which acts effectively like a negative pressure by suppressing the turbulent pressure.
Since its growth rate becomes larger for stronger density stratification (e.g., Jabbari
et al, 2014), one can imagine that it may play an important role in organizing
sunspot-like large-scale magnetic field structures in the upper part of the solar CZ.
Although its presence has been confirmed numerically in forced MHD turbulence
(e.g., Brandenburg et al, 2011; Warnecke et al, 2013), it does not play a significant
role in organizing the surface magnetic structure seen in MS16 because of their
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Figure 2. (a) The temporal evolutions of òK (solid), òMt (dashed), and òMm (dashed–dotted). (b) Time-depth diagrams of ( )á ñB B zx h eq and ( )á ñB B zy h eq .

Figure 3. (a) A series of snapshots for the horizontal distribution of Bz at z/dcz = 0.04 and the vertical distribution of the ( )á ñB B zz y eq or ( )á ñB B zz x eq . (b) The temporal
evolution of the 2D Fourier spectrum of the Bz

2 in the upper CZ, where kc = 2π/W.
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(a) (b)

Fig. 18 (a) 3-D view of the strongly stratified convection (for the progenitor run without rotation).
The black (gray) tone denotes downflows (upflows). (b) Time-depth diagrams for 𝐵𝑥 and 𝐵𝑦 . The
normalization is the equipartition field strength, 𝐵eq ≡ (𝜌𝒖2)1/2. In MS16, a one-layer polytrope
with a super-adiabaticity of 𝛿 ≡ ∇ − ∇ad = 1.6 × 10−3 was used; see MS16 and MS22 for details.

and the local convective turnover time defined by
( ) ( )t = á ñrz H z uzcv,l

2
h
1 2 (dashed) are compared as a function

of the depth, where rº á ñrH dz d ln h. In the upper CZ, the
condition �t tcv,l pk,max is always satisfied. Since, in such a
situation, the small-scale convective motion violently disturbs
the coherency of the magnetic flux, we would have to say that
the Parker instability would not be responsible for the large-
scale structure formation observed in our simulation.

Next, the large-scale flow and its association with the surface
magnetic structure are analyzed. For casting light on the large-
scale pattern, the small-scale structures with k/kc  8 are
eliminated by applying Fourier filtering (e.g., Warnecke
et al. 2016; Jabbari et al. 2016). A series of snapshots where
á ñBz k8 and á ñuz k8 on the horizontal plane at z/dcz = 0.04, are
shown in Figure 5(a), where ·á ñk8 denotes Fourier filtering. The
overplotted arrows are the velocity vectors composed of á ñux k8

and á ñuy k8. Additionally, 2D spectra of Bh
2, Bz

2, rvh
2, and rvz

2 in

the upper CZ are also shown in Figure 5(b). The spectrum at
each depth is spatially averaged over the normalized depth
from 0.0 to 0.25 and is temporally averaged over 10τcv around
the corresponding reference time.
It is significant that, in the dynamo-saturated stage, the

bipolar “band-like” structure elongated along the direction of
the horizontal magnetic flux is predominant (see Figure 2(b)).
Although the faster horizontal flow and stronger downflow can
be found in/around the region with stronger Bz before the
dynamo-saturation (left column), a large-scale flow pattern is
not necessarily associated with the magnetic structure in the
dynamo-saturated stage (middle and right columns). In
addition, we can find from the spectra that the energy contained
in the large-scale magnetic components is much larger than that
of the large-scale flow in the upper CZ. This suggests that
large-scale flows are not the cause, but a consequence of the
large-scale magnetic structures in the upper CZ.

Figure 5. (a) A series of snapshots of á ñBz k8 and á ñuz k8 on the horizontal plane at z/dcz = 0.04. The overplotted arrows are the velocity vectors. (b) 2D spectra of Bh
2,

Bz
2, rvh

2, and rvz
2 in the upper CZ around the reference time tr.
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Figure 2. (a) The temporal evolutions of òK (solid), òMt (dashed), and òMm (dashed–dotted). (b) Time-depth diagrams of ( )á ñB B zx h eq and ( )á ñB B zy h eq .

Figure 3. (a) A series of snapshots for the horizontal distribution of Bz at z/dcz = 0.04 and the vertical distribution of the ( )á ñB B zz y eq or ( )á ñB B zz x eq . (b) The temporal
evolution of the 2D Fourier spectrum of the Bz

2 in the upper CZ, where kc = 2π/W.
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(a) (b)

Fig. 19 (a) A snapshot for the horizontal distribution of 𝐵𝑧 at the CZ surface. (b) A snapshot for
the Fourier filtered 𝐵𝑧 processed from the data shown in panel (a). Here, the small-scale structures
with 𝑘/𝑘𝑐 & 8 are eliminated for casting light on the large-scale pattern (𝑘 is the wavenumber and
𝑘𝑐 = 2𝜋/𝐿ℎ with the horizontal box size 𝐿ℎ).

relatively rapid rotation; Ro = 0.02 was assumed there, while, according to Losada
et al (2012), Ro & 5 is required to excite the NEMPI.

The large-scale structure of the vertical magnetic field observed in MS16 is
similar to that observed in the large-scale dynamo by forced turbulence in a strongly
stratified atmosphere (Mitra et al, 2014; Jabbari et al, 2016). This suggests that
there may be an as-yet-unknown mechanism for the self-organization of large-scale
magnetic structures, which would be inherent in a strongly stratified atmosphere.

In Masada and Sano (2022), hereafter MS22, while varying angular velocity
as a control parameter, they explored the rotational dependence of the large-scale
dynamo in rigidly-rotating convection. They linked its cause through MF dynamo
models with DNSs where a strongly stratified polytrope was adopted as a model of
the convective atmosphere, as in MS16.
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Figure 4. Time-depth diagram of normalized hBxih for (a) model 1 (⌦ = 0.05, Ro = 0.33), (b) model 2 (⌦ = 0.1, Ro = 0.15), (c) model 3
(⌦ = 0.25, Ro = 0.045), and (d) model 4 (⌦ = 0.5, Ro = 0.019). The red (blue) tone denotes the positive (negative) value of hBxix. The
normalization unit for hBxih is the equipartition field strength, Beq(z).

⌦, we can see that the large-scale dynamo becomes gradually338

inactive and, is finally disappeared in the high Ro regime.339

Figure 4 depicts the time-depth diagram of hBxih for each340

model. The red (blue) tone denotes the positive (negative)341

hBxix in units of Beq(z), where Beq(z) = h⇢(z)u(z)2ih is342

the equipartition field strength. The time is normalized by343

⌧cv for each model. Since turbulent components of the mag-344

netic field are averaged out by taking horizontal mean, only345

the large-scale magnetic component and its time-space evo-346

lution can be observable in this figure. Note that, as shown in347

Appendix A, hByih also shows a similar cyclic behavior with348

hBxih, but with a phase difference of ⇡/2, suggesting that an349

“↵2-type” dynamo is excited in our DNS models (see, e.g.,350

Baryshnikova & Shukurov 1987; Raedler & Braeuer 1987;351

Brandenburg et al. 2009, MS14a,b). See MS16 for the or-352

ganization of the magnetic structure at the CZ surface in the353

case of strongly-stratified atmosphere.354

In Figure 4, we can see two kinds of space-time evolution355

patterns: in the slowly rotating models with (a)⌦ = 0.05 and356

(b)0.1 (models 1 & 2 with Ro = 0.33 & = 0.15), the large-357

scale magnetic component starts to grow, but gradually stalls358

as time passes and finally disappear. On the contrary to them,359

in the rapidly rotating models with (c)⌦ = 0.25 and (d)0.5360
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Figure 6. Time-depth diagrams of Bm
x for the MF models corresponding to the DNS models with (a)⌦ = 0.05 (Ro = 0.33), (b)⌦ = 0.1
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The normalization unit for Bm
x and t are Beq,sat(z) and ⌧cv evaluated from each DNS model.

formulated as441

↵ =
↵k

1 + B2
m/B2

eq,sat

, (15)442

(see, e.g., Brandenburg & Subramanian 2005, for the review443

of the quenching models). Here, the subscript “k” refers to444

the unquenched ↵ coefficient, which is calculated directly445

from DNS results of the saturated convective turbulence. The446

equipartition field strength at the saturated state, Beq,sat, is447

determined directly from each DNS model as448

Beq,sat(z) =
p
hh⇢u2ihi . (16)449

With the first-order smoothing approximation (FOSA), the450

MF coefficients ↵k and ⌘t are determined, in anisotropic451

forms, by (e.g., Käpylä et al. 2006, 2009),452

↵k(z)=�⌧cor[hhuz�xuyihi + hhux�yuzihi] ⌘ �⌧corHe↵ ,453

⌘t(z)= ⌧corhhu2
zihi , (17)454

where He↵ is the effective helicity, and ⌧cor is the corre-455

lation time of the convective turbulence. With assuming456

the Strouhal number is an order of unity in the CZ (St =457

⌧cor
p
hhu2

zihikc ⇡ 1), ⌧cor is determined, in the form with458

the depth dependence, by459

⌧cor = ⌧cor(z) =
1p

hhu2
zihikc(z)

, (18)460

(A) DNS models (B) MF models
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(models 3 & 4 with Ro = 0.045 & = 0.019), the oscillatory361

large-scale magnetic field is spontaneously organized.362

Commonly in the successful dynamo models, hBxih has363

a peak in the mid-part of the CZ and migrates from there364

to top and bottom CZs. The large-scale magnetic compo-365

nent becomes stronger with the increase of ⌦ (decrease of366

Ro), reaching the super-equipartition in the fastest spinning367

model. The cycle period of the large-scale magnetic com-368

ponent can be evaluated as Pcyc ' 100⌧cv for model 3 and369

' 150⌧cv for model 4, implying that Prot/Pcyc is an increas-370

ing function of Ro (decreasing function of Co). This seems371

to be compatible with the correlation between Prot/Pcyc and372

Ro found in the global model of the convective dynamo (c.f.,373

Warnecke 2018, and references therein). We will discuss the374

Ro-dependence of the dynamo cycle in § 5.2.375

Since the property of the large-scale dynamo changes be-376

tween models 2 and 3, the critical Rossby number that sep-377

arates the success or failure of the large-scale dynamo seems378

to exist, within the range 0.045 . Ro . 0.15, at around379

Rocrit ' 0.1 . (12)380

Intriguingly, Rocrit, which is estimated from our DNS mod-381

els in a Cartesian geometry, is compatible with that in-382

ferred from the convective dynamo simulation in a rotating383

spherical-shell performed by, e.g., Käpylä et al. (2012) and384

Warnecke (2018) if we convert our Rossby number to their385

definition of the Coriolis number, despite the difference of386

the geometry. This implies that the presence of the large-387

scale flow, such as the differential rotation and meridional388

flow, would not have a strong impact on the “excitation” of389

the large-scale dynamo. Specifically in § 5.1, we compare390

Rocrit (or Cocrit) between our DNS models and the other391

global convective dynamo simulations.392

4. ANALYSIS WITH MEAN-FIELD DYNAMO MODEL393

4.1. Governing Equation and Link to DNS394

In the previous section, we verified that the spin rate of395

the system is essential for exciting the large-scale dynamo.396

The critical Rossby number that separates the success or fail-397

ure of the large-scale dynamo, exists at Rocrit ' 0.1. Then,398

a question naturally arises, “How does the difference of the399

Rossby number impact on the physics of the convective dy-400

namo and then change its property ?”. To explore the answer401

to it, we utilize one-dimensional mean-field (MF) dynamo402

model, wherein the turbulent electromotive force (EMF) is403

determined based on the velocity and helicity profiles directly404

extracted from the DNS models.405

Our MF dynamo model is constructed in a similar man-406

ner to Masada & Sano (2014b). The ↵-effect is solely re-407

sponsible for the inductive effect in our MF model, while408

the ⌦-effect is ignored there. This is because the angular409

momentum transport does not occur due to the alignment of410

the rotation and gravity axes, and thus the differential rota-411

tion is not developed in our DNS setup. If the MF model412

linked to the DNS can reproduce the rotational dependence413

of the large-scale dynamo observed in the DNS runs, it would414
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Figure 5. Vertical profiles of (a)↵k(z) and (b)⌘t(z) extracted from
the DNS results for each model. The different colors denote models
with different ⌦.

be convincing evidence that the essential ingredient for it is415

manifested in the turbulent EMF. Our aim is to confirm it.416

By dividing the variables into the horizontal mean and fluc-417

tuating components, u = um + u0 and B = Bm + B0, the418

MF equation for the ↵2-type dynamo is obtained, from the419

induction equation, as420

@Bm

@t
= r⇥ [E � ⌘0r⇥ Bm] , (13)421

with422

E = ↵Bm � ⌘tr⇥ Bm , (14)423

where ⌘0 is the microscopic magnetic diffusivity, Bm =424

(Bm
x , Bm

y ) is the mean horizontal field, and E is the turbulent425

EMF (e.g., Parker 1979; Krause & Raedler 1980; Ossendri-426

jver et al. 2002; Brandenburg & Subramanian 2005). Note427

that Bm has dependences on time and depth. All the terms428

related to um and Bm
z can be ignored in considering the sym-429

metry of the system. The MF coefficients ↵ and ⌘t represent430

the turbulent ↵-effect and the turbulent magnetic diffusivity.431

The turbulent pumping effect is ignored in this study for the432

simplicity. See, e.g., MS14b for the EMF with the turbulent433

pumping effect.434

The mean magnetic component generated by the large-435

scale dynamo produces a Lorentz force that tends to quench436

the turbulent motions, and thus control the nonlinear satu-437

ration of the system. Since there is no definitive model to438

describe the quenching effect as yet, we adopt, for simplic-439

ity, the prototypical model (so-called algebraic ↵-quenching)440
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(z

)
α 

(z
)

(C) vertical profiles of α and β

Fig. 20 Time-depth diagrams of 𝐵𝑥 for (A) DNS models and (B) MF models. (C) Vertical profiles
of the turbulent 𝛼-effect (top) and turbulent diffusivity 𝛽 (bottom) which are reconstructed with
the analytic expressions of Eq. (61) from the information, such as kinetic helicity and rms velocity,
directly extracted from DNSs.

In Figure 20(a), DNS results are shown where a time-depth diagram of 𝐵𝑥 is
depicted for models with different values of Co. While in the slowly rotating model
with low Co, the large-scale magnetic component starts to grow, it gradually stalls
as time passes and finally disappears. The oscillatory large-scale magnetic field was
found to be spontaneously organized in the rapidly-rotating models with high Co.
It was found from DNS that the large-scale dynamo was excited when Co & Cocrit,
where Cocrit is the critical Coriolis number in the range 25 . Cocrit . 80, with
Eq. (35) as the definition of the Coriolis number. It is remarkable that Cocrit, which
determines the success or failure of the large-scale dynamo, is almost the same
regardless of the strength of the stratification (see Käpylä et al, 2009b) or the geometry
of the simulation model (see, e.g., Käpylä et al, 2012; Warnecke, 2018, for Cocrit in
the global simulations); see MS22 for the quantitative comparison between models.

To explore the underlying physics of the rotational dependence of the large-scale
dynamo, the influence of the rotation on the turbulent dynamo coefficients was
studied with the FOSA-based approach similar to that of MS14b. In Figure 19(c),
the vertical profiles of the turbulent 𝛼 effect and turbulent diffusivity 𝛽 reconstructed
with the analytic expressions of Eq. (61) were shown. With increasing the spin rate,
the turbulent diffusion weakens while the 𝛼 effect remains essentially unchanged
over the CZ, providing an intuition that the rotational dependence of the large-scale
dynamo observed in MS16 and MS22 was mainly due to the change in the magnitude
of the turbulent diffusion. In fact, this insight was confirmed by the evidence that the
MF dynamo model with incorporating the dynamo coefficients shown in Figure 19
reproduced quantitatively the result of the DNS; see Figure 19(b) for the time-depth
diagram of 𝐵𝑥 obtained in the MF models with utilizing different dynamo coefficients
extracted from the corresponding DNSs with different Co. Their conclusion taken
from the FOSA-based MF approach was that, with increasing the angular velocity,
the turbulent 𝛼-effect remains essentially unchanged over the CZ while the turbulent
diffusion weakens, giving the rotational dependence of the large-scale dynamo,
which is not only the same as the conclusion obtained by Käpylä et al (2009b) from
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weakly-stratified convective dynamo simulations using the “test-field method”, but
also the same as that obtained by Shimada et al (2022) from global solar dynamo
simulation with using the “self-sustained field method”. Although we don’t know
whether the independence of the 𝛼-effect on the rotation, seen in these studies, is
universal or not, it may give an important suggestion not only on the turbulence
modeling but on the solar dynamo modeling.

8 Looking forward

In this review, we have provided some insight into recent developments in our
understanding of the generation of astrophysical large-scale magnetic fields. The
current development of mean-field theory allows to go beyond some of the original
restrictions that were related to the assumption of large scale-separation and the inap-
propriate neglect of nonlinear effects due to higher order correlations in contributions
to the mean turbulent electromotive force. A big portion of the progress comes from
the development in the DNS of astrophysical turbulence. Noteworthy, the classical
mean-field theory is based on the fundamental equations of electrodynamics and has
well-known limits. With the new steps forward, we can take into account results of
the DNS, e.g., the spectral kernels, and treat them as the experimental facts. The
necessity of some phenomenological additions to classical mean-field theory are
motivated both by DNS and observations of the magnetic activity in astrophysical
systems, such as those in our Sun and other stars. In this way, mean-field models
become a valuable tool to understand the real and virtual worlds of the dynamo in
stars and in DNS.
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